

Aquatic Research & Restoration Centre

Fisheries and Oceans Canada Pêches et Océans Canada

What is 6-PPD (The Parent Compound)?

- 6-PPD is a tire preservative that's been used since the mid-1960s, it:
 - an antiozonant that makes up approximately 1-2% of all tires, by weight (~1lb per 100lbs of tire); and,
 - as the tire wears away, more 6-PPD is exposed at the surface.

Image: US Tire Manufacturer's Association

What is 6-PPDQ?

When exposed to ozone in atmosphere (oxidized), 6-PPD transforms into 6-PPD Quinone (6-PPDQ), which is the compound we're concerned about.

Discovered as the cause of 'urban runoff mortality syndrome' at sub-parts-pertrillon (ppt) levels in numerous fish species; first discovered in 2020.

Locally Impacted Fish Species

Lethal Concentration of 6-PPDQ (ng/L)

Mitigating Tire Wear Toxins to Protect Salmon

Project Objectives

What and where are the major sources of tire wear toxins inputs on Vancouver Island?

How do concentrations change over time and space?

How can low-cost nature-based solutions protect urban streams from tire wear toxins?

What and where are the major sources of tire wear toxins

Updates to Accommodate Large Sample Quantities

Sample Collection Smartphone App

QR-coded Sample Bottles

Auto-sampling and Data Processing

Precise xyz positioning Stirring Open source Low cost!

Data Processing & Visualization

Data Processing

MatLab GUI for signal processing & quantitation

Data Exploration

Interactive map for hotspot identification

Leveraging High Throughput Analysis

Where are we seeing 6-PPDQ on Vancouver Island?

When to collect samples that best represent a rain 'event'?

Where to collect samples that best represent impacts to urban waterways?

Wide Scale Surveillance - Driven by Indigenous/Local knowledge

CAMPBELL RIVER ENVIRONMENTAL COMMITTEE

Stream Sampling

Sample Collection (2022-2024)

Before-during-after rainfall

Increased engagement and sampling efforts throughout the study years

stone Upstream highway

Distinct

site-to-site behavior

Site C Northfield

Site D Cougar Creek

Several sites exceed coho LC50 (41 - 95 ng/L)

Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 2022

Oct 30 Nov 06 Nov 13 Nov 20

Gray shading = 6-PPDQ not detected

Interactive Data Dashboard

...For those interested, we could explore after presentations!

Project Objectives

What and where are the major sources of tire wear toxins inputs on Vancouver Island?

How do concentrations change over time and space?

How can low-cost nature-based solutions protect urban streams from tire wear toxins?

Investigate Variation Over Time & Space

Collect grab samples over increased time/space to assess residence time and changes over time.

Ultimately, aim to deploy VIU's mobile lab creekside and monitor rain event(s) in real time from start to finish.

Increased Time Interval Sampling

We have conducted high-interval sampling at two occasions in mid- and late-November.

First event:

- 1 system
- 1 rainfall (4 5 mm)
- ~ 24 hours sampling every 1 2 hours (28 samples)

Second event:

- 3 systems
- Several smaller rain events (2 5 mm) + 1 large rainfall (25 mm)
- ~120 hours sampling every 1 6 hours (244 samples)

First Increased Interval Efforts

Northfield Creek - Hourly Sampling

(Nov 21 - 22nd, 2023)

In-stream Concentration Dynamics

Increased Spatial Sampling

Increased spatial sampling has been occurring on multiple systems.

Each system provides variable results – typically seeing greater 6-PPDQ concentrations in increasingly urbanized areas.

Similar trend across all systems is decreasing seasonal 6-PPDQ concentrations, unless long dry period occurred.

Spatiotemporal Distributions

Project Highlights Since September 2023

- 30 groups trained (> 150 volunteers, > 670 hours)
- 56 streams (123 locations total) sampled between Campbell River and Victoria
- 6 rain events were captured (> 2,000 samples analyzed)
- 2 rain events were sampled at high frequency at 3 locations
- 6-PPDQ was detected in ~660 samples (33.2%)
 - ~100 stream samples were above the juvenile (alevin) coho LC50 (41 ng/L)
 - ~50 stream samples were above the juvenile (smolt) coho LC50 (95 ng/L)

Data publicly available with online interactive dashboard.

What We've Learned

- The high sample throughput method that we use allows us to adapt the sampling frequency to ensure that we captured the full in-stream pulse of 6-PPDQ;
- Concentrations observed were very dynamic, emphasizing that the timing of sampling is important;
- We also saw variation in how quickly different waterways reacted to the onset of rain:
 - Northfield Creek showed changes essentially immediately;
 - Cat Stream peaked several hours after the onset of rain.
- A 'first flush' is not a once a year event; dry periods can cause the same effect.

Contact Information

Project Website: www.tireweartoxins.com

BCCF ARRC Contact: Haley Tomlin (httomlin@bccf.com)

VIU AERL Contact: Dr. Erik Krogh (erik.krogh@viu.ca)

Interactive Data Dashboard

Can be found on the project website: www.tireweartoxins.com

Sample Analysis Workflows

Conventional - LC-MS

- ✓ Sensitive
- ✓ Selective
- ✓ Exhaustive
- **✓** \$\$\$

- ✓ Easy
- ✓ Fast
- ✓ Real-time & Portable
- ✓ Cost effective

Method Validation with LC-MS

UHPLC - TSQ Fortis

LLE w/ Heptane
5 min isocratic separation
~1 ng/L LoD in water

Agreement with conventional method (LC-MS)!

