

RDN Drinking Water & Watershed Protection Program Technical Advisory Committee November 10, 2016

Partner Updates

Agenda

USHP Stream Assessments	Reports – J. Pisani		
Area H OCP Update Hydrogeology Review	Report – B. Lyons (Waterline)		
Area E Water Monitoring Plan	Report – M. Bolton (Golder)		
Phase 2 Water Budget Scoping – French Creek & Cedar-Yellow Point	Report – A. Burgert (Piteau)		
Wetland Mapping & Monitoring	Presentation – K. Harris & A. Van Acken (VIU)		
Gabriola Groundwater Modelling	Presentation – R. Burgess (SFU)		
Question for the committee "What would you like to see from the DWWP program in 2017?"	Verbal		

Hydrogeological Review of Aquifers in Electoral Area H in Support of the Official Community Plan

Waterline Resources Inc.

November 10th, 2016

Bernadette Lyons, M.Sc.E., P.Eng, Hydrogeological Engineer

The information contained in this presentation is confidential and all rights reserved. This Document is protected by Copyright law and may not be reproduced or distributed in any manner, or for any purpose, except by written permission of copyright holder indicated above.

Waterline Scope

- Review major hydrogeological studies and the hydrogeological monitoring data collected in Area H since the Phase 1 Water Budget was completed, including data from 2011 to present,
- Provide an updated qualitative assessment of aquifer recharge to inform the OCP, and
- Provide an updated qualitative assessment of groundwater-surface water interaction to inform the OCP.

Presentation Outline

- Aquifers in Electoral Area H
- Updated hydrostratigraphy from the GSC study
- Case Study: Aquifer 416 Deep Bay
 - Aquifer response to daily precipitation
 - Aquifer response to annual precipitation
- Data gaps and Inconsistencies
- Conclusions and Recommendations

Electoral Area H – Study Area and Aquifers

Updated Hydrostratigraphy

Aquifer 416 – Quadra Sand

Seasonal Response to Precipitation

Waterline Resources Inc.

Water-Year Precipitation

Waterline Resources Inc.

Annual Response to Precipitation

Data Gaps and Inconsistencies

- Provincial aquifer mapping needs updating to:
 - Include new information from the GSC Nanaimo Lowland study that has potentially identified two additional aquifers in Area H:
 - > a Cowichan Formation aquifer near OW426 and
 - > a Quadra Sand aquifer near OW427.
 - > More accurately reflect vulnerability of the aquifers.
 - Review new borehole data in Aquifer 421 and reconsider the extents of that aquifer.

Data Gaps and Inconsistencies

- Seven of the eight groundwater monitoring wells in Area H do
 not provided meaningful data for the aquifers as they are
 currently mapped:
- Three of the four the BC GOWN wells in Area H are completed in unmapped aquifers.
- > Volunteer Groundwater Observation Network wells:

- The Shayla Road well is completed in the Quadra sand
 Aquifer 662 not Vashon (Kame) Aquifer 661, as was previously
 thought and water use in the well overwhelms the natural
 fluctuations in groundwater levels.
- No borehole information is available for the 3 QFN monitoring wells.

Data Gaps and Inconsistencies

These data gaps limit the assessment of aquifer recharge for the Area H aquifers and if not rectified can significantly affect groundwater management decisions made by the RDN and water users.

Recommendations

- Inform the Province of the need to update aquifer mapping in Area H.
- Identify appropriate groundwater monitoring well
 locations in each aquifer, to support future recharge
 assessments.
- Establish water management objectives to protect aquifer recharge. For example, consider:
 - Developing guidelines to assess and maintain the recharge capacity of land (similar to septic suitability requirements).
 - Compile the data and use it to develop recharge maps.
 Wate

Recommendations

- Encourage large water users in Area H to conduct longterm performance monitoring (water levels, flow, quality).
- Consider using environmental isotopes to determine the age, source, and origin of aquifer recharge.

Thank You

DRAFT WATER MONITORING PLAN

ELECTORAL AREA E (NANOOSE)

Background

- Build on the Phase 1 Water Budget Project
- Objective: to identify sources of uncertainty and work collaboratively with partners to develop a monitoring program that will
 - support detailed analysis & water budget models to assess supply and use
 - provide the technical basis to guide land use decisions in the area
 - support the development of a Water Sustainability Plan

- Review available information
- Update Geodatabase and Conceptual Model
- Host Public Feedback Session in Nanoose, BC
- Identify data gaps in existing monitoring network and develop Water Monitoring Plan

Project Area

Project Area

Climate Monitoring Stations

Climate Monitoring Stations

Surface Water Licenses

Surface Water Stress Assessments

Hydrometric Stations

Other Surface Water Monitoring

Bedrock Aquifers

Overburden Aquifers

Water Service Areas

Groundwater Monitoring Wells

Water Monitoring Plan: Key Elements

- Strategic locations identified to address data gaps prioritized to guide implementation
- Potential partnerships
- Preliminary Costs

Proposed Climate Monitoring Locations

Proposed Hydrometric Station Locations

Proposed Groundwater Monitoring Locations

Next Steps for Implementation

- Consult the public on Draft Monitoring Plan and incorporate feedback into the plan
- Engage potential partners to identify opportunities for collaboration
- Conduct detailed review of potential monitoring locations
- Develop a data management plan

PITEAU ASSOCIATES

GEOTECHNICAL AND HYDROGEOLOGICAL CONSULTANTS

SCOPING FOR PHASE 2 WATER BUDGETS

FRENCH CREEK AND CEDAR-YELLOWPOINT

French Creek

Required Data

- 1. groundwater levels
- 2. groundwater use
- 3. hydraulic properties
- 4. recharge natural and anthropogenic
- 5. recharge/discharge zonation
- 6. surface water connectivity to aquifers
- 7. creek flow and surface water/ groundwater interaction
- 8. surface water use

Proposed Collection Method

- 1. volunteer monitoring well network
- 2. cadastry/airphoto interpretation
- 3. pumping tests with volunteer wells
- 4. airphoto/map interpretation
- 5. airphoto/map interpretation
- 6. reconnaissance
- 7. airphoto interpretation and reconnaissance; interviews with locals
- 8. interviews with license holders

Cedar-Yellowpoint

Required Data

- 1. groundwater level monitoring
- 2. groundwater use
- 3. hydraulic properties
- 4. recharge natural and anthropogenic
- 5. recharge/discharge zonation
- 6. surface water connectivity to aquifers
- 7. creek flow and surface water/ groundwater interaction
- 8. surface water use

Proposed Collection Method

- 1. volunteer monitoring well network
- 2. cadastry/airphoto interpretation
- 3. pumping tests with volunteer wells
- 4. airphoto/map interpretation
- 5. airphoto/map interpretation
- 6. reconnaissance
- 7. airphoto interpretation and reconnaissance; interviews with locals
- 8. interviews with license holders

Cedar-Yellowpoint

Required Data

- 1. volunteer monitoring well network
- 2. cadastry/airphoto interpretation
- 3. pumping tests with volunteer wells
- 4. airphoto/map interpretation
- 5. recharge/discharge zonation
- 6. surface water connectivity to aquifer
- 7. airphoto interpretation and reconaissance; interviews with locals
- 8. interviews with license holders

Proposed Collection Method

- 1. volunteer monitoring well network
- 2. cadastry/airphoto interpretation
- 3. pumping tests with volunteer wells
- 4. airphoto/map interpretation
- 5. airphoto/map interpretation
- 6. reconnaissance
- 7. airphoto interpretation and reconnaissance; interviews with locals
- 8. interviews with license holders

Wetland Mapping in the RDN

Presented By Kayla Harris and Ashley Van Acken For the Drinking Water & Watershed Protection Program

MATRI

Outline

- Introduction
- What we have done
- What we are currently d
- Next steps
- Conclusion

Introduction

- The development of the wetland mapping project
- Preliminary research & mastering the methods
- Private property accessibility
- Site evaluation and interpretation

What we have done

- Ground-truthed study sites from predictive maps created by Nelson Lovestrom
- Total of **10 wetlands Mapped** including:
 - Little Qualicum water region (7)
 - South Wellington and Nanoose water region (1)
 - Englishman River water Region (1)
 - French Creek water Region (1)
- Recently received 6/12 letters of support granting accessibility to private lands for the French Creek water region
- Wetland Mapping training with twelve MVIHES volunteers

Regional District of Nanaimo Wetlands from Multispectral Analysis: Landsat 8 OLI (September 6, 2014)

Ground Truthed Wetlands in the RDN

	Name	Tru_Cls	Pre_Cls
	Whiskey Creek Wetland	Shallow Water : Bog	Shallow Water
	Little Q Falls Sec Wetland	Swamp	Swamp/Bog
	Little Q Falls Prim Wetland	Swamp : Shallow Water	Swamp/Bog
	Illusion Lake Wetland	Swamp : Marsh	Marsh
	Spider Lake 2 Wetland	Shallow Water : Swamp	Marsh
1 1 1 a	Spider Lake 1 Wetland	Fen	Non-Wetland
I Charles	Rathtrevor Wetland	Marsh : Shallow Water	Marsh
	Little Mountain Wetland	Swamp	Swamp
	Larkdowne Road Wetland	Wet Forest	Fen/Wet Meadow
Le La Contra	Top Bridge Park Wetland	Swamp	Non-Wetland

Leg	e	nd
-----	---	----

★ Monitored Wetlands Points

5

0

10

20

30

RDN_WaterRegions

Created: November 7, 2016 Author: Nelson Lovestrom

km

40

What we are currently doing

- Mapping takes place every Monday with three MABRRI students
- Recent focus is on the Little Qualicum water region due to abundance of publicly accessible land
- In addition to field days, information collected from each study site is added to a VIU database. This data is then used in the appropriate water region report, where field observations are analyzed
- Consultation with Vancouver Island University faculty to discuss
 unique wetland sites
- The search for grant funding

Next steps

- Completion of the Little Qualicum water region
- Continue mapping within the French Creek and Englishman River water regions
- Finalize mapping within all seven water regions
- Identify priority sites with a variety of surrounding land uses for monitoring groundwater recharge

Conclusion

- Refined mapping methods and standards to ensure data collection was sufficient during field analysis
- Training with MVIHES volunteers to help with mapping wetlands
- A total of 10 wetland sites have been ground-truthed and mapped across four water regions with the majority of sites residing in the Little Qualicum Water Region
- Professional discussions and meetings with Vancouver Island University faculty
- Moving forward MABRRI students will finalize the Little Qualicum water region and continue mapping in French Creek and Englishman River water regions

Gabriola Groundwater Modelling

Ryan Burgess, MSc Candidate, Simon Fraser University

Discussion

What would you like to see from the DWWP Program in 2017?

NEW BUSINESS, COMMENTS, QUESTIONS ?

THANK YOU!