



## 2023 Annual Report French Creek Pollution Control Centre

February 2024

Submitted to the Ministry of Environment and Climate Change Strategy <u>envauthorizationsreporting@gov.bc.ca</u>



www.rdn.bc.ca

## **Executive Summary**

The Regional District of Nanaimo (RDN) owns and operates the French Creek Pollution Control Centre (FCPCC) located at 957 Lee Road in Parksville. FCPCC provides secondary treatment. Treated effluent is discharged to the Strait of Georgia.

Operation of FCPCC is regulated by Environmental Management Permit No. PE-4200 issued by the Ministry of Environment and Climate Change Strategy. The authorized treatment works include a septage receiving facility; mechanical screens; grit tanks; primary clarifiers; biological reactors; secondary clarifiers; trickling filer; thermophilic aerobic digesters; biosolids thickening and dewatering facilities; odour control facilities; an outfall extending approximately 2 km from shore to a depth of 61 m below mean low water; an effluent pumping station and pipeline to convey effluent to the storage ponds at the Morningstar Golf Course; standby power; and related appurtenances.

This report was written by RDN staff as a permit requirement. This report summarizes and interprets the FCPCC monitoring data for 2023.

| Summary of Compliance         | Permit        | 2023                         | Permit Exceedances |
|-------------------------------|---------------|------------------------------|--------------------|
| Maximum Daily Flow (Outfall)  | 16,000 m³/day | 14,663.0 m³/day              | 0                  |
| Average Daily Flow            | -             | 10,217.9 m <sup>3</sup> /day |                    |
| Average Daily cBOD₅ (Outfall) | 45 mg/L       | 12.3 mg/L                    | 0                  |
| Average Daily TSS (Outfall)   | 60 mg/L       | 15.8 mg/L                    | 0                  |

The summary of 2023 monitoring data at FCPCC for the outfall effluent is as follows:

The summary of 2023 monitoring data for effluent discharged to Morningstar Golf Course is as follows:

| Summary of Compliance | Permit       | 2023         | Permit Exceedances |
|-----------------------|--------------|--------------|--------------------|
| Maximum Daily Flow    | 1,370 m³/day | 1,167 m³/day | 0                  |
| Average Daily cBOD₅   | 20 mg/L      | 8.85 mg/L    | 0                  |
| Average Daily TSS     | 30 mg/L      | 10.3 mg/L    | 0                  |

 Flow – The total volume of effluent discharged to the outfall and Morningstar Golf Course from French Creek Pollution Control Centre in 2023 was 3,802,325.6 m<sup>3</sup>/day, at an average daily flow of 10,417.3 m<sup>3</sup>/day. The maximum daily flow was 14,663.0 m3/day.

The average daily flow discharged from the outfall in 2023 was 10,217.9 m<sup>3</sup>/day. The maximum daily flow was 14,663.0 m<sup>3</sup>/day. In 2023, there were no maximum daily flow exceedances for the outfall effluent.

In 2023, flows were discharged to Morningstar Golf Course between May to September for a total of 79 days. The maximum permitted flow of that can be discharged to the lagoons is 1,370 m<sup>3</sup>/day. The total volume of effluent discharged to the Morningstar Golf Course in 2023 was 72,915.5 m<sup>3</sup>. There were no maximum daily flow exceedances to Morningstar.

5-day Carbonaceous Biochemical Oxygen Demand – The influent and effluent average 5-day carbonaceous biochemical oxygen demand (cBOD<sub>5</sub>) concentration for 2023 was 231 mg/L and

12.3 mg/L, respectively. The average removal efficiency in 2023 was 94.5%. The average cBOD₅ of the effluent discharged to Morningstar Golf Course was 8.85 mg/L.

There were no  $cBOD_5$  exceedances in 2023 where the maximum permitted  $cBOD_5$  concentration was exceeded.

Total Suspended Solids – The influent and effluent average total suspended solids (TSS) concentration in 2023 was 390 mg/L and 15.8 mg/L, respectively. The average TSS removal efficiency in 2023 was approximately 95.6%. The average TSS of the effluent discharged to Morningstar Golf Course was 10.3 mg/L.

There were no TSS permit exceedances for the outfall effluent or for effluent discharged to Morningstar Golf Course in 2023.

- General parameters, metals, volatile and semi-volatile compounds 2023 results were all consistent with historical data. Only one sample is taken per year so limited conclusions can be made on trending of the parameters.
- Biosolids SYLVIS conducts fecal coliform and full parameter testing as the Qualified Professional for the soil fabrication program. SYLVIS testing results are summarized in the 2023 Management of RDN Biosolids (see Appendix G).

In the RDN sampling program, biosolids met Class A standards for metals and fecal coliforms. Ten fecal coliform samples and two full parameter samples were taken in the RDN sampling.

## **Table of Contents**

| 1) |                                                                                               | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 1.1                                                                                           | Environmental Management System1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2) |                                                                                               | Site Description and Neighborhood1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3) |                                                                                               | Permit Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | 3.1                                                                                           | Authorized Discharges2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | 3.2                                                                                           | Monitoring Requirements2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 3.3                                                                                           | Operational Certificate3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 3.4                                                                                           | Outfall Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4) |                                                                                               | Flow Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | 4.1                                                                                           | Treatment Plant Flow4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 4.2                                                                                           | Outfall Flow5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 4.3                                                                                           | Flows to Morningstar Golf Course7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 4.4                                                                                           | Historical Trends7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5) |                                                                                               | Effluent Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | E 4                                                                                           | E Day Carbonasaous Piechomical Ovygan Domand (PDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | 5.1                                                                                           | 5-Day Carbonaceous Biochemical Oxygen Demand (CBOD5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | 5.1<br>5.1.1                                                                                  | Historical Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 5.1.1<br>5.2                                                                                  | Historical Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 5.1.1<br>5.2<br>5.2.1                                                                         | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)         Historical Trends         11         Total Suspended Solids         Historical Trends         13                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 5.1.1<br>5.2<br>5.2.1<br>5.3                                                                  | S-Day Carbonaceous Biochemical Oxygen Demand (CBOD5)         Historical Trends         11         Total Suspended Solids         Historical Trends         13         Other General Parameters         14                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 5.1.1<br>5.2<br>5.2.1<br>5.3<br>5.4                                                           | S-Day Carbonaceous Biochemical Oxygen Demand (CBOD5)         Historical Trends         11         Total Suspended Solids         Historical Trends         13         Other General Parameters         14         Metals                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 5.1.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5                                                    | S-Day Carbonaceous Biochemical Oxygen Demand (CBOD5)         Historical Trends         11         Total Suspended Solids         Historical Trends         13         Other General Parameters         14         Metals         16         Volatile and Semi-Volatile Compounds                                                                                                                                                                                                                                                                                                                             |
| 6) | 5.1.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5                                                    | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)       11         Historical Trends.       11         Total Suspended Solids       12         Historical Trends.       13         Other General Parameters       14         Metals.       16         Volatile and Semi-Volatile Compounds       17         Biosolids       17                                                                                                                                                                                                                                                                            |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1                                               | S-Day Carbonaceous Biochemical Oxygen Demand (CBOD5)       11         Historical Trends.       11         Total Suspended Solids       12         Historical Trends.       13         Other General Parameters       14         Metals       16         Volatile and Semi-Volatile Compounds       17         Biosolids       17         Biosolids Production       17                                                                                                                                                                                                                                       |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1<br>6.1.1                                      | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)         Historical Trends         11         Total Suspended Solids         12         Historical Trends         13         Other General Parameters         14         Metals         16         Volatile and Semi-Volatile Compounds         17         Biosolids         17         Biosolids Production         17         Historical Trends         19                                                                                                                                                                                             |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1<br>6.1.1<br>6.2                               | S-Day Carbonaceous Biochemical Oxygen Demand (CBOD5)       13         Historical Trends       12         Historical Trends       13         Other General Parameters       14         Metals       16         Volatile and Semi-Volatile Compounds       17         Biosolids       17         Biosolids       17         Biosolids       17         Biosolids       17         Biosolids       17         Volatile and Semi-Volatile Compounds       17         Biosolids       17         Biosolids       19         Biosolids Analysis       19                                                           |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1<br>6.1.1<br>6.2<br>6.3                        | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)       11         Total Suspended Solids       12         Historical Trends       13         Other General Parameters       14         Metals       16         Volatile and Semi-Volatile Compounds       17         Biosolids       17         Biosolids Production       17         Historical Trends       19         Biosolids Analysis       19         Fecal Coliforms       22                                                                                                                                                                    |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1<br>6.1.1<br>6.2<br>6.3<br>6.4                 | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)         Historical Trends         11         Total Suspended Solids         12         Historical Trends         13         Other General Parameters         14         Metals         16         Volatile and Semi-Volatile Compounds         17         Biosolids         17         Biosolids Production         17         Biosolids Analysis         19         Fecal Coliforms         22         Stabilization and Dewatering                                                                                                                    |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1<br>6.1.1<br>6.2<br>6.3<br>6.4<br>6.5          | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)<br>Historical Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6) | 5.1<br>5.2<br>5.2.1<br>5.3<br>5.4<br>5.5<br>6.1<br>6.1.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.5.1 | S-Day Carbonaceous Biochemical Oxygen Demand (CBODs)       11         Total Suspended Solids       11         Total Suspended Solids       12         Historical Trends.       13         Other General Parameters       14         Metals       16         Volatile and Semi-Volatile Compounds       17         Biosolids       17         Biosolids Production       17         Historical Trends       19         Biosolids Analysis       19         Fecal Coliforms       22         Stabilization and Dewatering       22         Biosolids Management       23         Forest Fertilization       23 |

|    | 6.5.3 | Excellence in Biosolids Award23                      |
|----|-------|------------------------------------------------------|
| 7) |       | Process Control Monitoring                           |
|    | 7.1   | Ammonia24                                            |
|    | 7.2   | Nitrate, Nitrite, Alkalinity25                       |
|    | 7.3   | Temperature27                                        |
|    | 7.3.1 | Historical Trends27                                  |
|    | 7.4   | pH28                                                 |
|    | 7.4.1 | Historical Trends29                                  |
|    | 7.5   | Dissolved Oxygen                                     |
|    | 7.5.1 | Historical Trends31                                  |
| 8) |       | Resource Consumption                                 |
|    | 8.1   | Chemical Consumption                                 |
|    | 8.1.2 | Historical Trends32                                  |
|    | 8.2   | Electrical Consumption                               |
|    | 8.3   | Water Consumption                                    |
| 9) |       | <i>Odour</i>                                         |
|    | 9.1   | Operational Procedures                               |
|    | 9.2   | Odour Records                                        |
|    | 9.2.1 | Historical Trends35                                  |
|    | 9.3   | Odour Episodes                                       |
|    | 9.4   | Future Plans                                         |
| 10 | )     | Septage Receiving                                    |
|    | 10.1  | Historical Trends                                    |
|    | 10.2  | Septage Testing                                      |
| 11 | l)    | Contributory Population and Remaining Plant Capacity |
| 12 | 2)    | Environmental Incidents                              |
| 13 | 3)    | Conditional Management Plan                          |
| 14 | 1)    | Facility Upgrades & Major Projects                   |
|    | 14.1  | Upgrades and Repairs Completed in 202339             |
|    | 14.2  | Studies and Projects Completed in 202339             |
|    | 14.3  | Upgrades and Repairs Planned for 202439              |
|    | 14.4  | Studies and Projects Planned for 202439              |
| 15 | 5)    | Resource Recovery                                    |

| 15.1   | Biosolids Reuse                                                        |
|--------|------------------------------------------------------------------------|
| 15.2   | Effluent Reuse40                                                       |
| 15.3   | Solid Waste Recycling40                                                |
| 16)    | Education Programs                                                     |
| 16.1   | Source Control40                                                       |
| 16.2   | Water Conservation40                                                   |
| 16.3   | Open House40                                                           |
| 16.4   | SepticSmart40                                                          |
| 16.5   | Liquid Waste Management Plan41                                         |
| 16.6   | Website41                                                              |
| 17)    | Conclusions                                                            |
| 17.1   | Flows                                                                  |
| 17.2   | Carbonaceous Biochemical Oxygen Demand (cBOD <sub>5</sub> )42          |
| 17.3   | Total Suspended Solids (TSS)42                                         |
| 17.4   | General Parameters, Metals, Volatile and Semi-Volatile Compounds       |
| 17.5   | Biosolids Quality43                                                    |
| Append | dix A – Waste Management Permit No. PE-4200 & Amendments               |
| Append | dix B – Internal Flow Monitoring and Laboratory Raw Data (Permit Data) |
| Append | dix C – External Laboratory Test Results                               |
| Append | dix D – Odour Reports                                                  |
| Append | dix E – Environmental Incident Reports                                 |
| Append | dix F – Conditional Management Plan 2023 Annual Report                 |
| Append | dix G – 2023 Management of RDN FCPCC Biosolids (SYLVIS)                |

# 1) Introduction

The Regional District of Nanaimo (RDN) owns and operates the French Creek Pollution Control Centre (FCPCC) located at 957 Lee Rd, Parksville, British Columbia. Treated effluent from FCPCC is discharged to the Strait of Georgia. A small portion of FCPCC treated effluent is pumped in some years to storage lagoons at the Morningstar Golf Course, which is located adjacent to the treatment facility. The treated effluent is used by the golf course to supplement irrigation water.

Operation of the treatment plant is regulated by the Ministry of Environment and Climate Change Strategy under Environmental Management Permit No. PE-4200 (the Permit), issued on January 16, 1976, and amended most recently on July 10, 1990 (see Appendix A).

The authorized works include a septage receiving facility; mechanical screens; grit tanks; primary clarifiers; biological reactors; secondary clarifiers; thermophilic aerobic digesters; biosolids thickening and dewatering facilities; odour control facilities; an outfall extending approximately 2 km from shore to a depth of 61 m below mean low water; an effluent pumping station and pipeline to convey effluent to the storage ponds at the Morningstar Golf Course; standby power; and related appurtenances.

The FCPCC was constructed in 1977 as an activated sludge treatment plant cable of serving a population of 12,000 people. In December 1996, a trickling filter was added to the process and an expansion undertaken to accommodate the increasing population of the area. The expansion, completed in 1997, doubled the plant's capacity and significantly improved the quality of its effluent and biosolids. The plant now uses trickling filter and solid contact tank technology. Further work was done to address odour problems associated with the plant's initial design.

Future upgrades and expansion are planned in the FCPCC Expansion and Odour Upgrade project which the RDN plans to issue to tender in 2025.

This report was written by RDN staff as a permit requirement to summarize and interpret the 2023 FCPCC monitoring data.

## 1.1 Environmental Management System

The RDN's Wastewater Services department's Environmental Management System (EMS) is certified to the ISO 14001:2015 standard. ISO 14001 is an international EMS standard based on a model of continual improvement. The overall aim of ISO 14001 is to support environmental protection and prevent pollution in balance with socio-economic needs. Visit <u>www.rdn.bc.ca/environmental-management-system</u> for more information.

## 2) Site Description and Neighborhood

The FCPCC is located at 957 Lee Road between Parksville and Qualicum Beach. The septage receiving area is accessed via a second driveway, located further away from Hwy 19A on Lee Road. The site is approximately 9 acres in size and is surrounded by relatively dense coniferous and deciduous trees.

A single-family residential subdivision is located directly to the south of the plant, condominiums to the southwest, and another single-family subdivision to the west. A campground, marina, pub, and restaurant are located across Hwy 19A to the north.

There were no significant changes to the layout of the neighbourhood in 2023. Phase I of French Creek Estates, to the north of the FCPCC, was constructed several years ago. Further phases are proposed in the next fifteen years.

The undeveloped areas around the plant are zoned for high-density residential use, except for the land directly across the highway, which is zoned CMQ6. This zoning allows for the following uses: residential, hotel, resort condominium, neighborhood pub, office, personal service use, public assembly use, recreation facility, restaurant, or retail store.

## 3) Permit Requirements

## 3.1 Authorized Discharges

Section 1.1 of the Permit states the maximum daily effluent discharge to the outfall is:

16,000 m<sup>3</sup>/day maximum daily flow.

Section 1.2 of the Permit stipulates that the characteristics of the discharge shall not exceed:

- 5-day carbonaceous biochemical oxygen demand (cBOD<sub>5</sub>): 45 mg/L
- Total suspended solids (TSS): 60 mg/L.

Appendix 02 of the Permit states the maximum daily effluent discharge to Morningstar Golf Course is:

1,370 m<sup>3</sup>/day.

And that the discharge shall not exceed:

- 5-day carbonaceous biochemical oxygen demand (cBOD<sub>5</sub>): 20 mg/L
- Total suspended solids (TSS): 30 mg/L.

From 2014 to 2018, no treated effluent flows were discharged to Morningstar Golf Course. Discharge to Morningstar Golf Course resumed in 2019.

## 3.2 Monitoring Requirements

The Permit monitoring requirements are summarized in Table 1. Monthly reports were submitted to the Ministry of Environment and Climate Change Strategy in 2023, reporting all required test results.

#### Table 1. Monitoring Requirements by Permit Subsection Number

#### Appendix C-1 A. Sampling and Analyses

A suitable sampling facility shall be installed, and a grab sample of the effluent shall be obtained once a day. The sample shall be analyzed daily for TSS and weekly for cBOD<sub>5</sub>.

Once per year a composite sample, over an eight-hour period shall be collected and analyzed for metals, volatile organics, phenolics, organochlorine pesticides, acid extractable herbicides, anions, and inorganics.

#### Appendix C-1 B. Flow Measurement

A flow measuring device must be provided and maintained to record, once per day, the effluent volume discharged over a 24-hour period.

#### Appendix B-1 E. Outfall Inspection

An inspection of the outfall line is conducted once every five years, using an underwater camera.

#### Appendix C-1 C. Sampling and Analytical Procedures

Sampling and flow measurement shall be carried out in accordance with the British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Sediment and Biological Samples (2013 Edition).

Analyses are to be carried out in accordance with the *British Columbia Environmental Laboratory Manual: For the Analysis of Water, Wastewater, Sediment, Biological Materials and Discrete Ambient Air Samples (2020)*, or by suitable alternative procedures as authorized by the Regional Waste Manager.

#### Appendix C-2 E. Reporting

The Permitee shall maintain records of analyses and flow measurements for inspection and once per month submit the data, suitably tabulated, to the Regional Waste Manager for the previous month's monitoring.

The 2023 monitoring program adhered to all sampling, analytical, flow measurements, and reporting requirements specified in the Permit.

## 3.3 Operational Certificate

The RDN's approved Liquid Waste Management Plan (LWMP) includes a draft Operational Certificate for FCPCC.

## 3.4 Outfall Inspection

FCPCC's outfall was inspected by Remote Operated Vehicle (ROV) in 2017 by SeaVeyors Marine and Environmental. The inspection noted that the outfall pipe was in fair condition. The diffuser section of the outfall was replaced in 2013. No major leaks were identified in the ROV inspection. However, a small leak was identified from the clamp between the old outfall pipe and the replacement diffuser section. A follow up inspection of the diffusers was done in 2019 by ITB Subsea. The RDN retained GreatPacific to review the ROV videos and provide recommendations in terms of next steps. GreatPacific concluded the small leak from the clamp located approximately 60 m deep and 2 km offshore did not impact the performance of the diffusers. GreatPacific did not recommend a repair due to the expense of addressing the leak and concluded there was no significant risk of the leak to human health or the environment.

The outfall was inspected again in November 2022 by GreatPacific Consulting Ltd. GreatPacific noted the small leak at the diffuser connection did not intensify since 2019. However, another small leak of treated effluent was found at the Flange #3 location. The leak is described as "a diffuse, constant stream of effluent from the west side of the crown. The rate of leakage at this flange was estimated to be much less than that of one of the 25 diffuser ports. GreatPacific noted that it is unlikely that the leak is resulting in imminent risk to environment or human health.

The RDN increased the frequency of inspection and monitoring by underwater Remote Operated Vehicle (ROV) to a 3-year interval to ensure the small leaks of treated effluent at the Flange #3 and diffuser clamp location do not intensify. The next inspection will be scheduled for 2025.

# 4) Flow Monitoring

## 4.1 Treatment Plant Flow

Daily flow monitoring data for FCPCC in 2023 are presented in Appendix B. Results are summarised in Table 2 and graphed in Figure 1. The combined flow of effluent discharged from the outfall in 2023 was 3,802,325.6 m<sup>3</sup>, at an average daily flow of 10,417.3 m<sup>3</sup>/day.

| Month     | Combined<br>Average Daily<br>Flow (m³/day) | Combined<br>Total Flow<br>(m <sup>3</sup> ) | Combined<br>Maximum<br>Flow (m <sup>3</sup> /day) | Combined<br>Minimum Flow<br>(m³/day) | Total Monthly<br>Precipitation<br>(mm) |
|-----------|--------------------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------|----------------------------------------|
| January   | 10,843.8                                   | 336,158.8                                   | 13,259.7                                          | 9,738.0                              | 82.9                                   |
| February  | 9,949.7                                    | 278,591.1                                   | 10,259.8                                          | 9,436.0                              | 42.9                                   |
| March     | 10,455.9                                   | 324,134.2                                   | 12,690.4                                          | 9,572.7                              | 31.6                                   |
| April     | 10,093.4                                   | 302,802.7                                   | 11,006.7                                          | 9,608.1                              | 53.6                                   |
| May       | 10,171.7                                   | 315,323.1                                   | 11,043.0                                          | 9,777.6                              | 21.7                                   |
| June      | 10,252.8                                   | 307,583.7                                   | 11,019.4                                          | 9,843.9                              | 15.9                                   |
| July      | 10,315.7                                   | 319,786.3                                   | 10,669.2                                          | 10,015.0                             | 4.1                                    |
| August    | 10,315.7                                   | 319,787.7                                   | 11,275.2                                          | 9,603.0                              | 14.3                                   |
| September | 9,757.7                                    | 292,731.9                                   | 10,214.8                                          | 9,486.3                              | 35.1                                   |
| October   | 10,449.7                                   | 323,939.4                                   | 14,663.0                                          | 9,427.1                              | 138.6                                  |
| November  | 10,565.8                                   | 316,972.7                                   | 11,988.1                                          | 9,649.4                              | 93.1                                   |
| December  | 11,758.5                                   | 364,514.0                                   | 14,462.8                                          | 10,670.0                             | 143.7                                  |
| Average   | 10,417.3                                   |                                             |                                                   |                                      |                                        |
| Total     |                                            | 3,802,325.6                                 |                                                   |                                      | 677.5                                  |
| Maximum   |                                            |                                             | 14,663.0                                          |                                      |                                        |
| Minimum   |                                            |                                             |                                                   | 9,427.1                              |                                        |

#### Table 2. 2023 Treatment Plant Flow

\* Source: Qualicum Beach Airport weather station (see Environment Canada)



Figure 1. Monthly Average Daily Treatment Plant Flow

## 4.2 Outfall Flow

Daily flow monitoring data for FCPCC in 2023 are presented in Appendix B. The average flow discharged from FCPCC in 2023 was 10,217.9 m<sup>3</sup>/day, and the total annual flow was 3,729,410.1 m<sup>3</sup>. Table 3 and Figure 2 summarize flow data.

In 2023, there was no maximum daily flow non-compliances.

As part of the LWMP process, the RDN is working collaboratively on I&I reduction with our partners in the City of Parksville and the Town of Qualicum Beach. The RDN has also had Closed Circuit TV (CCTV) condition assessments completed of the interceptor pipes. The RDN also monitors influent quality and conducts a flow monitoring program to investigate sources of infiltration. The RDN also conducts a program to repair sources of infiltration on the Qualicum Beach and Parksville interceptor lines.

| Month     | Outfall<br>Average Daily<br>Flow (m³/day) | Outfall Total<br>Flow (m <sup>3</sup> ) | Outfall<br>Maximum<br>Flow (m <sup>3</sup> /day) | Outfall<br>Minimum<br>Flow (m³/day) | Outfall Permit<br>Exceedances<br>(Maximum<br>Daily Flow) |
|-----------|-------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------|----------------------------------------------------------|
| January   | 10,843.8                                  | 336,158.8                               | 13,259.7                                         | 9,738.0                             | 0                                                        |
| February  | 9,949.7                                   | 278,591.1                               | 10,259.8                                         | 9,436.0                             | 0                                                        |
| March     | 10,455.9                                  | 324,134.2                               | 12,690.4                                         | 9,572.7                             | 0                                                        |
| April     | 10,093.4                                  | 302,802.7                               | 11,006.7                                         | 9,608.1                             | 0                                                        |
| May       | 9,629.3                                   | 298,508.5                               | 10,786.8                                         | 8,791.1                             | 0                                                        |
| June      | 9,526.9                                   | 285,806.7                               | 10,712.0                                         | 8,790.1                             | 0                                                        |
| July      | 9,801.4                                   | 303,842.4                               | 10,544.9                                         | 8,981.0                             | 0                                                        |
| August    | 9,772.3                                   | 302,941.7                               | 10,566.6                                         | 8,589.0                             | 0                                                        |
| September | 9,706.6                                   | 291,197.9                               | 10,214.8                                         | 9,078.0                             | 0                                                        |
| October   | 10,449.7                                  | 323,939.4                               | 14,663.0                                         | 9,427.1                             | 0                                                        |
| November  | 10,565.8                                  | 316,972.7                               | 11,988.1                                         | 9,649.4                             | 0                                                        |
| December  | 11,758.5                                  | 364,514.0                               | 14,462.8                                         | 10,670.0                            | 0                                                        |
| Average   | 10,217.6                                  |                                         |                                                  |                                     |                                                          |
| Total     |                                           | 3,729,410.1                             |                                                  |                                     | 0                                                        |
| Maximum   |                                           |                                         | 14,663.0                                         |                                     |                                                          |
| Minimum   |                                           |                                         |                                                  | 8,589.0                             |                                                          |

Table 3. 2023 Average Daily Flow per Month from the FCPCC Outfall





## 4.3 Flows to Morningstar Golf Course

The Morningstar Golf Course effluent reuse program resumed in 2023. During the summer months effluent can be discharged to lagoons on Morningstar Golf Course for irrigation. The maximum permitted flow of that can be discharged to the lagoons is 1,370 m<sup>3</sup>/day.

In 2023, flows were discharged from June to September for a total 79 days. Flow monitoring data for the effluent sent to Morningstar Golf Course are summarized in Table 4. The total volume of effluent discharged to the Morningstar Golf Course in 2023 was 72,915.5 m<sup>3</sup>. There were no maximum flow non-compliances in 2023.

| Month     | Morningstar<br>Total Flows (m³) | Number of<br>Discharge days | Morningstar<br>Maximum Flow<br>(m <sup>3</sup> /day) | Morningstar Permit<br>Exceedances<br>(Maximum Daily Flow) |
|-----------|---------------------------------|-----------------------------|------------------------------------------------------|-----------------------------------------------------------|
| January   | 0                               | 0                           | 0                                                    | 0                                                         |
| February  | 0                               | 0                           | 0                                                    | 0                                                         |
| March     | 0                               | 0                           | 0                                                    | 0                                                         |
| April     | 0                               | 0                           | 0                                                    | 0                                                         |
| May       | 16,815                          | 17                          | 1,167                                                | 0                                                         |
| June      | 21,777                          | 22                          | 1,075                                                | 0                                                         |
| July      | 15,944                          | 19                          | 1,084                                                | 0                                                         |
| August    | 16,846                          | 18                          | 1,058                                                | 0                                                         |
| September | 1,534                           | 3                           | 976                                                  | 0                                                         |
| October   | 0                               | 0                           | 0                                                    | 0                                                         |
| November  | 0                               | 0                           | 0                                                    | 0                                                         |
| December  | 0                               | 0                           | 0                                                    | 0                                                         |
| Total     | 72,915.5                        | 79                          |                                                      | 0                                                         |
| Maximum   |                                 |                             | 1,167.0                                              |                                                           |

Table 4. 2023 Average Daily Flow per Month from the FCPCC Outfall

## 4.4 Historical Trends

Historical combined, outfall, and Morningstar flow data reported for previous years are summarised in Tables 3 to 5 and graphed in Figure 3. The discharge to Morningstar Golf Course over the past 10 years has been variable based on demand from the golf course.

In 2015, the RDN repaired a large source of infiltration of sea water on the Qualicum Beach interceptor line. Repairs to manholes to prevent infiltration on the Qualicum Beach interceptor line have also been conducted in 2018, 2019, 2021, and 2022.

#### **Combined Max Daily Combined Average Daily Combined Total Flow** Year Flow (m<sup>3</sup>/day) (m<sup>3</sup>) Flow (m<sup>3</sup>/day) 18,983.0 2014 11,063.9 4,038,338.7 2015 10,713.7 3,910,516.8 15,962.5 2016 10,457.4 3,827,402.4 17,935.2 2017 10,588.5 3,864,816.0 16,275.6 2018 3,779,923.6 19,908.0 10,356.0 2019 3,598,527.4 9,859.0 16,420.3 2020 9,920.3 3,630,815.1 18,439.9 2021 10,511.5 3,836,715.7 25,903.3 2022 10,493.7 3,830,187.6 18,580.1 2023 10,417.3 3,802,325.6 14,663.0

#### **Table 5. Historical Trends: Treatment Plant Flow**

#### Table 6. Historical Trends: Outfall Discharge

| Year | Outfall Average Daily<br>Flow (m³/day) | Outfall Total Flow<br>(m <sup>3</sup> ) | Outfall Permit Exceedances<br>(Maximum Daily Flow) |
|------|----------------------------------------|-----------------------------------------|----------------------------------------------------|
| 2014 | 10,765.4                               | 3,929,361                               | 4                                                  |
| 2015 | 10,713.7                               | 3,910,517                               | 0                                                  |
| 2016 | 10,457.1                               | 3,816,837                               | 2                                                  |
| 2017 | 10,588.5                               | 3,864,816                               | 2                                                  |
| 2018 | 10,356.0                               | 3,779,924                               | 3                                                  |
| 2019 | 9,842.4                                | 3,592,469                               | 1                                                  |
| 2020 | 9,846.1                                | 3,593,821                               | 1                                                  |
| 2021 | 10,364.8                               | 3,783,166                               | 3                                                  |
| 2022 | 10,493.7                               | 3,830,188                               | 2                                                  |
| 2023 | 10,217.9                               | 3,709,111                               | 0                                                  |

#### Table 7. Historical Trends: Morningstar Discharge

| Year | Morningstar Total Flow (m <sup>3</sup> ) | Morningstar Permit Exceedances<br>(Maximum Daily Flow) |
|------|------------------------------------------|--------------------------------------------------------|
| 2014 | 108,977.6                                | 0                                                      |
| 2015 | 0.0                                      | 0                                                      |
| 2016 | 0.0                                      | 0                                                      |
| 2017 | 0.0                                      | 0                                                      |
| 2018 | 0.0                                      | 0                                                      |
| 2019 | 28,623.6                                 | 0                                                      |
| 2020 | 27,271.2                                 | 0                                                      |
| 2021 | 53,549.8                                 | 0                                                      |
| 2022 | 0.0                                      | 0                                                      |
| 2023 | 72,915.5                                 | 0                                                      |



Figure 3. Historical Trends: Combined Total Yearly Flow

## 5) Effluent Monitoring

## **5.1** 5-Day Carbonaceous Biochemical Oxygen Demand (cBOD<sub>5</sub>)

Five-day carbonaceous biochemical oxygen demand (cBOD<sub>5</sub>) is a measure of the quantity of oxygen consumed by microorganisms to break down organic matter in water in which the contribution from nitrogenous bacteria has been suppressed. A high cBOD<sub>5</sub> means less oxygen is available to support aquatic life. Thus, high cBOD<sub>5</sub> levels result in the contamination of the receiving environment.

The Permit requires testing the effluent for  $cBOD_5$  weekly, with a maximum permitted concentration of 45 mg/L for discharge to the outfall, and 20 mg/L for discharge to Morningstar Golf Course. The average influent and effluent  $cBOD_5$  concentration for 2023 was 231 mg/L and 12.3 mg/L, respectively. The average  $cBOD_5$  removal efficiency was 94.5%. The average effluent  $cBOD_5$  concentration for effluent sent to Morningstar Golf Course was 8.8 mg/L. Results are summarized Table 8 and graphed in Figure 4. Appendix B contains the daily  $cBOD_5$  results.

Effluent was also tested each week for  $cBOD_5$  in a separate sampling program at the ISO17025:2017 certified lab at Greater Nanaimo Pollution Control Centre (GNPCC) to meet the Wastewater Systems Effluent Regulations (WSER) requirements for quarterly average  $cBOD_5$  results.

There were no  $cBOD_5$  non-compliances in 2023 for the FCPCC effluent, and for the effluent sent to Morningstar Golf Course.

 Table 8. 2023 Influent & Effluent cBOD<sub>5</sub> Concentrations

| Month     | Influent<br>Average<br>cBOD₅<br>(mg/L) | Outfall<br>Effluent<br>Average<br>cBOD₅<br>(mg/L) | Average %<br>Reduction<br>in cBOD₅<br>(%) | Outfall Permit<br>Exceedances<br>(cBOD <sub>5</sub> >45<br>mg/L) | Morningstar<br>Average<br>cBOD₅<br>(mg/L) | Morningstar<br>Permit<br>Exceedances<br>(cBOD₅ >20<br>mg/L) |
|-----------|----------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| January   | 193                                    | 15.6                                              | 91.5                                      | 0                                                                |                                           |                                                             |
| February  | 220                                    | 14.4                                              | 93.6                                      | 0                                                                |                                           |                                                             |
| March     | 207                                    | 14.4                                              | 93.0                                      | 0                                                                |                                           |                                                             |
| April     | 241                                    | 15.8                                              | 93.5                                      | 0                                                                |                                           |                                                             |
| May       | 256                                    | 13.1                                              | 94.8                                      | 0                                                                | 12.8                                      | 0                                                           |
| June      | 299                                    | 11.7                                              | 96.1                                      | 0                                                                | 9.5                                       | 0                                                           |
| July      | 261                                    | 10.4                                              | 95.9                                      | 0                                                                | 7.1                                       | 0                                                           |
| August    | 245                                    | 11.6                                              | 95.3                                      | 0                                                                | 6.0                                       | 0                                                           |
| September | 202                                    | 9.6                                               | 95.3                                      | 0                                                                | 7.3                                       | 0                                                           |
| October   | 233                                    | 9.4                                               | 95.9                                      | 0                                                                |                                           |                                                             |
| November  | 198                                    | 8.3                                               | 95.8                                      | 0                                                                |                                           |                                                             |
| December  | 184                                    | 10.6                                              | 94.0                                      | 0                                                                |                                           |                                                             |
| Average   | 231                                    | 12.3                                              | 94.5                                      |                                                                  | 8.8                                       |                                                             |
| Total     |                                        |                                                   |                                           | 0                                                                |                                           | 0                                                           |

\* % Reduction only determined when the influent and effluent cBOD<sub>5</sub> testing was done on the same day





## 5.1.1 Historical Trends

Historical influent and effluent average cBOD<sub>5</sub> concentrations, reduction efficiencies and the number of outfall and Morningstar Golf Course cBOD<sub>5</sub> non-compliances reported over the past 10 years are summarised in the Table 9 and graphed in Figure 5.

The BOD reduction increased in 2023 in comparison to previous years.

| Year | Influent<br>Average<br>cBOD₅ (mg/L) | Outfall Effluent<br>Average cBOD₅<br>(mg/L) | Average %<br>Reduction<br>in cBOD₅ | Outfall Permit<br>Exceedances<br>(cBOD₅ >45 mg/L) | Morningstar<br>Permit<br>Exceedances<br>(cBOD₅ >20 mg/L) |
|------|-------------------------------------|---------------------------------------------|------------------------------------|---------------------------------------------------|----------------------------------------------------------|
| 2014 | 174                                 | 11                                          | 93.3                               | 0                                                 | 0                                                        |
| 2015 | 172                                 | 9.3                                         | 94.0                               | 0                                                 | -                                                        |
| 2016 | 152                                 | 12.5                                        | 91.4                               | 0                                                 | -                                                        |
| 2017 | 215                                 | 14.0                                        | 93.6                               | 0                                                 | -                                                        |
| 2018 | 230                                 | 15.1                                        | 93.0                               | 2                                                 | -                                                        |
| 2019 | 240                                 | 14.7                                        | 93.7                               | 0                                                 | 0                                                        |
| 2020 | 198                                 | 25.3                                        | 88.8                               | 19                                                | 0                                                        |
| 2021 | 201                                 | 22.8                                        | 88.1                               | 1                                                 | 0                                                        |
| 2022 | 187                                 | 20.6                                        | 88.8                               | 0                                                 | -                                                        |
| 2023 | 231                                 | 12.3                                        | 94.5                               | 0                                                 | 0                                                        |

Table 9. Historical Trends: Influent & Effluent cBOD<sub>5</sub> Concentrations



Figure 5. Historical Trends: Influent & Effluent Yearly Average cBOD<sub>5</sub> Concentration

## 5.2 Total Suspended Solids

Total suspended solids (TSS) are solids within wastewater that can be captured on a fine filter paper. They are visible in water and decrease water clarity. High concentrations of TSS can cause many problems for aquatic life.

The Permit requires testing of the effluent daily, with a maximum permitted concentration of 60 mg/L for discharge to the outfall, and 30 mg/L for discharge to Morningstar Golf Course (see Appendix B for test data). The pump sending effluent to Morningstar Golf Course is controlled by a TSS probe. The pump turns off the probe hits the 30 mg/L Morningstar TSS permit limit.

The average TSS concentration for influent and outfall effluent was 390 mg/L and 15.8 mg/L, respectively. The average TSS removal efficiency in 2023 was approximately 95.6%. Table 10 and Figure 6 present the average monthly TSS levels for the influent and effluent in 2023. The average TSS of effluent sent to Morningstar Golf Course was 10.3 mg/L. There were no TSS exceedances for the outfall effluent or for effluent sent to Morningstar Golf Course.

The RDN is undertaking an expansion of FCPCC which will allow the wastewater treatment process to treat higher daily flows more efficiently.

| Month     | Influent<br>Average<br>TSS (mg/L) | Outfall<br>Effluent<br>Average<br>TSS (mg/L) | Average %<br>Reduction<br>in TSS | Outfall<br>Permit<br>(mg/L) | Outfall Permit<br>Non-<br>Conformances<br>(cBOD <sub>5</sub> >60<br>mg/L) | Morningstar<br>Effluent<br>Average TSS<br>(mg/L) | Morningstar<br>Permit<br>Exceedances<br>(TSS >30 mg/L) |
|-----------|-----------------------------------|----------------------------------------------|----------------------------------|-----------------------------|---------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| January   | 330                               | 18.7                                         | 93.9                             | 60                          | 0                                                                         |                                                  |                                                        |
| February  | 373                               | 14.2                                         | 95.8                             | 60                          | 0                                                                         |                                                  |                                                        |
| March     | 385                               | 15.5                                         | 95.8                             | 60                          | 0                                                                         |                                                  |                                                        |
| April     | 389                               | 15.5                                         | 95.8                             | 60                          | 0                                                                         |                                                  |                                                        |
| May       | 444                               | 16.3                                         | 96.2                             | 60                          | 0                                                                         | 12.3                                             | 0                                                      |
| June      | 447                               | 13.9                                         | 96.8                             | 60                          | 0                                                                         | 12.0                                             | 0                                                      |
| July      | 418                               | 12.7                                         | 96.8                             | 60                          | 0                                                                         | 9.2                                              | 0                                                      |
| August    | 414                               | 13.1                                         | 96.7                             | 60                          | 0                                                                         | 8.2                                              | 0                                                      |
| September | 390                               | 15.4                                         | 95.8                             | 60                          | 0                                                                         | 7.2                                              | 0                                                      |
| October   | 427                               | 16.4                                         | 95.9                             | 60                          | 0                                                                         |                                                  |                                                        |
| November  | 374                               | 19.3                                         | 94.6                             | 60                          | 0                                                                         |                                                  |                                                        |
| December  | 285                               | 18.4                                         | 93.1                             | 60                          | 0                                                                         |                                                  |                                                        |
| Average   | 390                               | 15.8                                         | 95.6                             |                             |                                                                           | 10.3                                             |                                                        |
| Total     |                                   |                                              |                                  |                             | 0                                                                         |                                                  | 0                                                      |

#### Table 10. 2023 Influent & Effluent TSS Concentrations



Figure 6. 2023 Influent & Effluent Monthly Average TSS Concentration

### 5.2.1 Historical Trends

Historical average TSS concentration in the influent and effluent, reduction efficiencies and the number of outfall and Morningstar Golf Course TSS non-compliances reported over the past 10 years are summarised in Table 9 and graphed in Figure 6. 2023 data are consistent with previous years.

| Year | Influent<br>Average TSS<br>(mg/L) | Effluent<br>Average TSS<br>(mg/L) | Average %<br>Reduction in<br>TSS | Outfall Permit<br>Exceedances<br>(cBOD₅ >60 mg/L) | Morningstar<br>Permit<br>Exceedances<br>(TSS >30 mg/L) |
|------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------------------------|--------------------------------------------------------|
| 2014 | 326                               | 20.7                              | 93.2%                            | 2                                                 | 1                                                      |
| 2015 | 305                               | 19.3                              | 93.1%                            | 1                                                 | -                                                      |
| 2016 | 272                               | 26.6                              | 90.1%                            | 24                                                | -                                                      |
| 2017 | 322                               | 23.8                              | 92.4%                            | 15                                                | -                                                      |
| 2018 | 375                               | 18.8                              | 94.5%                            | 1                                                 | -                                                      |
| 2019 | 394                               | 17.6                              | 95.2%                            | 0                                                 | 0                                                      |
| 2020 | 361                               | 26.2                              | 92.3%                            | 30                                                | 1                                                      |
| 2021 | 344                               | 18.9                              | 94.0%                            | 0                                                 | 0                                                      |
| 2022 | 304                               | 20.5                              | 92.8%                            | 0                                                 | -                                                      |
| 2023 | 390                               | 15.8                              | 95.6%                            | 0                                                 | 0                                                      |

| Table 11. | Historical     | Trends:   | Influent | &        | <b>Fffluent</b> | TSS | Concentration |
|-----------|----------------|-----------|----------|----------|-----------------|-----|---------------|
| TUNIC II. | i ii stori cui | ii ciius. | mache    | <b>U</b> | LINGCHU         | 100 | concentration |



Figure 7. Historical Trends: Influent & Effluent Yearly Average TSS Concentration

## 5.3 Other General Parameters

The RDN completes annual testing is completed on the effluent for the following parameters:

| Alkalinity         | Dissolved Sulphate | рН             | Total Phosphorus     |
|--------------------|--------------------|----------------|----------------------|
| Chloride           | Dissolved Sulphide | Total Cyanide  | Total Organic Carbon |
| Dissolved Fluoride | Oil and Grease     | Total Nitrogen |                      |

A sample of the effluent is tested in September of each year by an external laboratory. In 2023, sample was taken on September 6 (see Appendix C for test results). Results of these general parameters reported over previous years are summarized in Table 12.

Results reported for 2023 for general parameters were consistent with previous years. Only one sample is taken per year so limited conclusions can be made on trending of the parameters.

Dissolved chloride and sulphate in the effluent has progressively increased until 2014 but showed a decrease after 2015.

Dissolved chloride, fluoride, and sulphate results were not requested in 2023 external sampling due to an oversight. These parameters will be requested in future years.

Other parameters remain consistent with historical data.

| General Parameter       | Units | 2014  | 2015  | 2016    | 2017    | 2018    | 2019    | 2020    | 2021    | 2022    | 2023    |
|-------------------------|-------|-------|-------|---------|---------|---------|---------|---------|---------|---------|---------|
| рН                      | mg/L  | 7.07  | 7.45  | 7.81    | 8.17    | 7.81    | 7.77    | 7.71    | 7.94    | 7.98    | 7.90    |
| Total Alkalinity *      | mg/L  | 149   | 188   | 160     | 202     | 217     | 238     | 250     | 220     | 206     | 224     |
| Dissolved Chloride      | mg/L  | 3,460 | 1,830 | 1,500   | 1,600   | 1,400   | 1,920   | 1,400   | 1,700   | 1,700   | -       |
| Total Kjeldahl Nitrogen | mg/L  | 10    | 21    | 22.5    | 31.4    | 35.9    | 36.2    | 37.2    | -       | -       | -       |
| Total Nitrogen (as N)   | mg/L  | -     | -     | -       | -       | -       | -       | -       | 41.2    | 32.3    | 45.8    |
| Total Oil and Grease    | mg/L  | <1.0  | 1     | <1.0    | <1.0    | <1.0    | <2.0    | <1.0    | 12      | <1.0    | <1.0    |
| Dissolved Sulphate      | mg/L  | 463   | 266   | 220     | 248     | 172     | 270     | 200     | 250     | 230     | -       |
| Dissolved Sulphide      | mg/L  | <0.01 | 0.02  | 0.0551  | 0.0568  | 0.068   | 0.039   | 0.040   | 0.038   | 0.023   | 0.043   |
| Total Cyanide           | mg/L  | 0.003 | 0.002 | 0.00238 | 0.00218 | <0.0050 | 0.00440 | 0.00250 | <0.0050 | 0.00227 | 0.00223 |
| Dissolved Fluoride      | mg/L  | 0.17  | 0.04  | 0.110   | 0.130   | 0.130   | <1.00   | 0.13    | 0.14    | 0.16    | -       |
| Total Organic Carbon    | mg/L  | 12.6  | 16.2  | 15.8    | 18.1    | 21      | 19      | 34      | 22      | 33      | 30      |
| Total Phosphorus        | μg/L  | 2,050 | 2,650 | 2,780   | 2,130   | 3,740   | 2,410   | 4,000   | 2,100   | 2,300   | 4,100   |

#### Table 12. Historical Trends: Effluent General Parameters

\* Total Alkalinity results reflect average annual results from the internal laboratory starting in 2022. Prior to 2022, this parameter was determined by external laboratory testing.

## 5.4 Metals

The RDN completes annual testing of the effluent for the following metals:

| Aluminum (total)    | Chromium (total)   | Manganese (dissolved) | Selenium (total) |
|---------------------|--------------------|-----------------------|------------------|
| Arsenic (total)     | Cobalt (dissolved) | Mercury (total)       | Silver (total)   |
| Barium (dissolved)  | Copper (dissolved) | Molybdenum (total)    | Tin (total)      |
| Boron (dissolved)   | Iron (Dissolved)   | Nickel (dissolved)    | Zinc (total)     |
| Cadmium (dissolved) | Lead (total)       |                       |                  |

A composite sample of the effluent is collected over a 24-hour period in September (a low flow month) each year and is tested by an external laboratory. In 2023, metals were sampled on September 6 (see Appendix C). Historic metals results are summarized in Tables 13 and 14. All parameters were consistent with previous years.

| Total Metals | Units | 2014   | 2015    | 2016   | 2017   | 2018   | 2019    | 2020   | 2021  | 2022   | 2023   |
|--------------|-------|--------|---------|--------|--------|--------|---------|--------|-------|--------|--------|
| Aluminum     | μg/L  | 35     | 40      | 97.6   | 92     | 30     | 42.3    | 80     | 41    | 36     | 45     |
| Arsenic      | μg/L  | 1      | 0.6     | 1.2    | 0.7    | 0.67   | 0.72    | 0.64   | 0.72  | 0.60   | 0.74   |
| Chromium     | μg/L  | <0.5   | <0.5    | 9.7    | <5.0   | <5.0   | 1.26    | <5.0   | <5.0  | <5.0   | <5.0   |
| Lead         | μg/L  | 0.18   | 0.2     | 0.36   | <1.0   | <1.0   | 0.32    | <1.0   | <1.0  | <1.0   | <1.0   |
| Mercury      | μg/L  | < 0.01 | <0.0025 | <0.010 | <0.010 | 0.0040 | <0.010  | 0.0030 | 0.068 | <0.019 | <0.038 |
| Molybdenum   | μg/L  | 2.5    | 1.4     | 1.4    | <5.0   | <5.0   | 1.98    | <5.0   | <5.0  | <5.0   | <5.0   |
| Selenium     | μg/L  | 21.2   | <0.5    | 0.28   | <0.50  | <0.50  | <0.50   | <0.50  | <0.50 | <0.50  | <0.50  |
| Silver       | μg/L  | <0.02  | 0.03    | 0.027  | <0.10  | <0.10  | < 0.050 | <0.10  | <0.10 | <0.10  | <0.10  |
| Tin          | μg/L  | NT*    | 0.38    | <5.0   | <25    | <25    | 0.56    | <25    | <25   | <25    | <25    |
| Zinc         | μg/L  | 42     | 29      | 37.2   | <25    | <25    | 24.9    | 34     | <25   | 31     | 29     |

#### **Table 13. Historical Trends: Effluent Total Metal Concentrations**

NT – Not Tested

#### Table 15. Historical Trends: Effluent Dissolved Metal Concentrations

| <b>Dissolved Metals</b> | Units | 2014   | 2015 | 2016  | 2017   | 2018   | 2019  | 2020   | 2021   | 2022   | 2023   |
|-------------------------|-------|--------|------|-------|--------|--------|-------|--------|--------|--------|--------|
| Barium                  | μg/L  | 4.8    | 3.8  | 22.7  | 7.3    | <5.0   | <5.0  | 3.3    | 78.7   | <5.0   | 91.2   |
| Boron                   | μg/L  | 647    | 510  | 469   | 570    | 490    | 635   | 470    | 550    | 560    | 650    |
| Cadmium                 | μg/L  | < 0.01 | 0.02 | 0.024 | <0.050 | <0.050 | 0.033 | <0.020 | <0.050 | <0.050 | <0.050 |
| Cobalt                  | μg/L  | 0.43   | 0.44 | <0.50 | <1.0   | <1.0   | 1.67  | 0.47   | <1.0   | <1.0   | <1.0   |
| Copper                  | μg/L  | 2.3    | 11.6 | 17.6  | 14.1   | 10.8   | 11.7  | 17.1   | 23.0   | 6.7    | 10.5   |
| Iron                    | μg/L  | 357    | 523  | 354   | 146    | 286    | 442   | 807    | 169    | 375    | 254    |
| Manganese               | μg/L  | 96     | 100  | 92.2  | 96     | 83.2   | 123   | 96     | 110    | 117    | 79.6   |
| Nickel                  | μg/L  | 2.5    | 2.9  | 2.3   | <5.0   | <5.0   | 7.0   | 3.4    | <5.0   | <5.0   | <5.0   |

## 5.5 Volatile and Semi-Volatile Compounds

The RDN completes annual testing of effluent for the following volatile and semi-volatile compounds:

| Benzene                   | Dichloromethane      | 1,1-1 Trichloroethane |
|---------------------------|----------------------|-----------------------|
| Chloroform                | Di-n-butyl phthalate | 1,1-2 Trichloroethane |
| Chloromethane             | Ethylbenzene         | Trichloroethylene     |
| Di(2-ethylhexyl)phthalate | PCBs                 | Toluene               |
| Dichlorobromomethane      | Tetrachloroethylene  | Total Phenols         |

A composite sample of the effluent is collected over a 24-hour period in September (a low flow month) each year and is tested by an external laboratory. In 2023, volatiles were sampled on September 6 (refer to Appendix C for test results). The historical average concentration of the volatile and semi-volatile compounds is summarised in Table 15. 2023 data are consistent with previous years.

#### Table 16. Historical Trends: Effluent Semi Volatile and Volatile Compounds

| Parameter                 | Units | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | 2023     |
|---------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|
| Benzene                   | μg/L  | <0.5   | <0.5   | <0.40  | <0.40  | 1.0    | <0.5   | <0.40  | <0.40  | <0.40  | <0.40    |
| Chloroform                | μg/L  | <1.0   | <1     | <1.0   | 1.5    | 1.2    | <1.0   | 1.4    | 1.2    | 1.2    | 1.1      |
| Chloromethane             | μg/L  | 2      | <1     | <1.0   | <1.0   | <1.0   | NT     | <1.0   | <1.0   | <1.0   | <1.0     |
| Dichlorobromomethane      | μg/L  | <1.0   | <1     | <1.0   | <1.0   | <1.0   | <1.0   | <1.0   | <1.0   | <1.0   | <1.0     |
| Dichloromethane           | μg/L  | <1     | <1     | <2.0   | <2.0   | <2.0   | <3.0   | <2.0   | <1.0   | <2.0   | <2.0     |
| Ethylbenzene              | μg/L  | <0.5   | <0.5   | <1.0   | <0.40  | <0.40  | <1.0   | <0.40  | <0.40  | <0.40  | <0.40    |
| Tetrachloroethylene       | μg/L  | <1     | <1     | <0.50  | <0.50  | <0.50  | <1.0   | <0.50  | <0.50  | <0.50  | <0.50    |
| Toluene                   | μg/L  | <0.5   | <0.5   | <0.40  | <0.40  | 1.7    | <1.0   | <0.40  | <0.40  | <0.40  | <0.40    |
| Total Phenols             | mg/L  | 0.005  | 0.010  | 0.005  | 0.016  | 0.025  | 0.0087 | 0.0082 | 0.0033 | 0.0039 | < 0.0015 |
| 1,1,1-Trichloroethane     | μg/L  | <1     | <1     | <0.50  | <0.50  | <0.50  | <1.0   | <0.50  | <0.50  | <0.50  | <0.50    |
| 1,1,2-Trichloroethane     | μg/L  | <1     | <1     | <0.50  | <0.50  | <0.50  | <1.0   | <0.50  | <0.50  | <0.50  | <0.50    |
| Trichloroethylene         | μg/L  | <1     | <1     | <0.50  | <0.50  | <0.50  | <1.0   | <0.50  | <0.50  | <0.50  | <0.50    |
| Di(2-ethylhexyl)phthalate | μg/L  | 0.23   | <0.20  | <2.0   | <2.0   | <2.0   | <1.0   | <8.0   | <2.0   | <2.0   | <2.0     |
| Di-N-Butyl Phthalate      | μg/L  | <0.2   | <0.2   | <2.0   | <2.0   | <0.80  | <1.0   | <8.0   | <2.0   | <2.0   | <2.0     |
| PCBs                      | μg/L  | < 0.01 | <0.009 | <0.050 | <0.050 | <0.050 | <0.050 | <0.050 | <0.056 | <0.056 | <2.5     |

## 6) Biosolids

## 6.1 **Biosolids Production**

FCPCC produces Class A biosolids. The average monthly production of biosolids in 2023 is summarized in Table 16 and graphed in Figure 8.

| Month     | Trucked Biosolids<br>(Dry Tonnes) | Trucked Biosolids<br>(Wet Tonnes) | % Solids<br>(Dewatered) |
|-----------|-----------------------------------|-----------------------------------|-------------------------|
| January   | 31.2                              | 98.1                              | 31.9                    |
| February  | 27.3                              | 78.9                              | 34.6                    |
| March     | 26.2                              | 84.4                              | 31.1                    |
| April     | 33.1                              | 97.4                              | 34.0                    |
| May       | 40.3                              | 118.6                             | 33.9                    |
| June      | 33.5                              | 101.0                             | 33.1                    |
| July      | 30.0                              | 87.8                              | 34.2                    |
| August    | 36.2                              | 103.8                             | 34.9                    |
| September | 32.6                              | 101.4                             | 34.3                    |
| October   | 30.7                              | 88.9                              | 34.5                    |
| November  | 27.4                              | 80.4                              | 34.1                    |
| December  | 27.9                              | 84.0                              | 33.3                    |
| Average   | 31.5                              | 93.7                              | 33.6                    |
| Total     | 378                               | 1,125                             |                         |

#### Table 17. 2023 Biosolids Production

#### Figure 8. 2023 Monthly Biosolids Production (Trucked Dry Tonnes)



## 6.1.1 Historical Trends

Historical average polymer usage, total trucked solids (wet tons and dry tons) and yearly average percent solids reported for biosolids are summarized in Table 17 and graphed in Figure 9. Biosolids production decreased in 2023 in comparison to previous years.

| Year | Polymer Usage<br>(Kg/year) | Trucked Biosolids<br>(Dry Tonnes/year) | Trucked Biosolids<br>(Wet Tonnes/year) | % Solids (Average<br>Pressed Solids) |
|------|----------------------------|----------------------------------------|----------------------------------------|--------------------------------------|
| 2014 | 5,402                      | 376                                    | 1,236.15                               | 30.3                                 |
| 2015 | 6,566                      | 384                                    | 1,298.93                               | 29.5                                 |
| 2016 | 5,867                      | 367                                    | 1,188.66                               | 30.8                                 |
| 2017 | 4,860                      | 392                                    | 1,260.32                               | 31.1                                 |
| 2018 | 5,610                      | 413                                    | 1,286.52                               | 32.1                                 |
| 2019 | 5,481                      | 401                                    | 1,255.85                               | 31.9                                 |
| 2020 | 6,383                      | 425                                    | 1,280.71                               | 33.2                                 |
| 2021 | 4,815                      | 448                                    | 1,299.19                               | 34.5                                 |
| 2022 | 5,108                      | 444                                    | 1,291.03                               | 34.4                                 |
| 2023 | 5,618                      | 378                                    | 1,124.71                               | 33.6                                 |

#### Table 17. Historical Trends: Biosolids Production





## 6.2 Biosolids Analysis

The Organic Matter Recycling Regulation (OMRR) requires that sampling for quality criteria must be taken once per year or from every 1,000 tonnes dry weight, whichever occurs first.

Sampling to meet requirements of the Biosolids Growth Medium fabrication is conducted by SYLVIS. For more information on this sampling, please refer to Appendix G.

The RDN also conducts a program to test FCPCC biosolids for quality criteria. Testing for the following parameters is conducted twice a year by an external laboratory.

| Total Solids              | Chromium* | Molybdenum* |
|---------------------------|-----------|-------------|
| Volatile Suspended Solids | Cobalt*   | Nickel*     |
| Moisture                  | Copper*   | Phosphorus  |
| Total Kjeldahl Nitrogen   | Iron      | Potassium   |
| Arsenic*                  | Lead*     | Selenium*   |
| Cadmium*                  | Mercury*  | Zinc*       |

\*Monitoring required by the Organic Matter Recycling Regulation (OMRR).

Biosolids were tested in January and July 2023 (see Appendix C for test reports). The average concentration of these parameters, reported over previous years, is summarised in Table 16. 2023 metal concentrations were consistent with previous years' data.

All FCPCC biosolids samples in 2023 met the OMRR Class A regulatory limits for metals.

| Parameter               | Units        | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | 2023   | Class<br>A | Class<br>B |
|-------------------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|------------|
| Total Solids            | %            | 29.0   | 25.5   | 26.6   | 29.8   | 30.8   | 31.5   | 32.4   | 33.7   | 35.7   | 31.0   | -          | -          |
| Volatile Solids         | %            | 74.4   | 76.9   | 75.75  | 70.2   | 72.9   | 71.5   | 74.35  | 72.45  | 76.5   | 71.8   | -          | -          |
| Moisture                | %            | 70.9   | 74.5   | 69.65  | 69     | 69.5   | 68.5   | 67.8   | 66     | 64.5   | 69.0   | -          | -          |
| Total Kjeldahl Nitrogen | % dry weight | 2.85   | 4.875  | 4.97   | 5.7    | 5.7    | 6.6    | 3.86   | 5.5    | 4.35   | 4.65   | -          | -          |
| Arsenic                 | μg/g         | 2.8    | 2.1    | 2.8    | 2.8    | 2.7    | 3.3    | 2.1    | 2.3    | 2.1    | 2.2    | 75         | 75         |
| Cadmium                 | μg/g         | 2.1    | 1.9    | 1.9    | 2.1    | 1.4    | 2.1    | 1.8    | 1.6    | 1.3    | 2.0    | 20         | 20         |
| Chromium                | μg/g         | 25.85  | 19.5   | 24.5   | 27.3   | 27.9   | 37.9   | 35.1   | 37.1   | 26     | 27.7   | -          | 1,060      |
| Cobalt                  | μg/g         | 2.0    | 1.6    | 3.0    | 4.9    | 2.9    | 2.5    | 2.0    | 2.5    | 2.1    | 2.3    | 150        | 150        |
| Copper                  | μg/g         | 832    | 733    | 702.5  | 807    | 637    | 798    | 620    | 602.5  | 531.5  | 677    | -          | 2,200      |
| Iron                    | μg/g         | 30,950 | ND     | ND     | ND     | 41,400 | 48,800 | 37,900 | 43,800 | 37,200 | 31,500 | -          | -          |
| Lead                    | μg/g         | 21.7   | 15.4   | 19.2   | 18.75  | 21.8   | 19.3   | 14.3   | 13.1   | 13.45  | 14.6   | 500        | 500        |
| Mercury                 | μg/g         | 1.86   | 1.50   | 1.60   | 0.99   | 0.66   | 0.80   | 1.07   | 0.82   | 1.21   | 0.82   | 5          | 15         |
| Molybdenum              | μg/g         | 5.7    | 5.4    | 5.4    | 4.7    | 3.6    | 4.6    | 4.9    | 6.3    | 5.1    | 4.3    | 20         | 20         |
| Nickel                  | μg/g         | 12.15  | 10.25  | 12.5   | 11.7   | 10.47  | 14.15  | 12.95  | 13.35  | 10.485 | 10.8   | 180        | 180        |
| Phosphorus              | μg/g         | 21,800 | 16,900 | 17,900 | 25,750 | 22,800 | 28,600 | 21,300 | 23,850 | 20,100 | 19,800 | -          | -          |
| Potassium               | μg/g         | 993    | ND     | ND     | ND     | 727.5  | 964.5  | 759.5  | 986.5  | 776.5  | 833    | -          | -          |
| Selenium                | μg/g         | 5.1    | 4.0    | 3.9    | 4.4    | 3.1    | 4.2    | 3.2    | 3.0    | 2.8    | 3.8    | 14         | 14         |
| Zinc                    | ug/g         | 1035   | 880    | 954.5  | 1175   | 890    | 1.250  | 1.080  | 1.110  | 918    | 1.270  | 1.850      | 1.850      |

 Table 18.: Historical Trends: Biosolids General Parameters

ND – Not determined

## 6.3 Fecal Coliforms

OMRR requires 7 representative samples for fecal coliforms to be taken every 1,000 tonnes dry weight or once per year, whichever occurs first. The level of fecal coliforms in each Class A sample must be <1000 MPN per gram of total solids (dry weight basis).

SYLVIS conducts fecal coliform testing as the Qualified Professional for the Biosolids Growth Medium (BGM) fabrication program at Harmac. SYLVIS fecal coliform testing is summarized in the 2023 Management of RDN Biosolids (see Appendix G).

The RDN also conducts its own fecal coliform sampling. Sampling was taken of sludge at a sample point immediately downstream of the ATAD digesters. In 2023, the RDN sent ten representative samples of biosolids to an external laboratory for fecal coliform analysis (see test reports in Appendix C). All the laboratory samples met Class A limits. The geometric mean fecal coliform concentration of the biosolids from the RDN sampling in 2023 was <20 MPN/g (dry weight) and is summarized in Table 19.

| FCPCC Biosolids |                 |  |  |
|-----------------|-----------------|--|--|
| Parameter       | Fecal Coliforms |  |  |
| Unit            | MPN / g dry     |  |  |
| 4-Jan-23        | <20             |  |  |
| 7-Feb-23        | <20             |  |  |
| 13-Mar-23       | <20             |  |  |
| 11-Apr-23       | <20             |  |  |
| 15-May-23       | <20             |  |  |
| 18-Jul-23       | <20             |  |  |
| 8-Aug-23        | <20             |  |  |
| 6-Sep-23        | <20             |  |  |
| 16-Oct-23       | <20             |  |  |
| 4-Dec-23        | <20             |  |  |
| Average         | <20             |  |  |

#### Table 19. 2023 Biosolids Fecal Coliforms Concentrations

## 6.4 Stabilization and Dewatering

Biosolids at FCPCC are stabilized using autothermal thermophilic aerobic digesters (ATADs). The ATADs consist of 4 digesters and 3 cooling storage cells which treat sludge collected from the bottom of the sedimentation tanks. Sludge is held in the tanks for 10 to 12 days at 45 to 65°C, during which time it is decomposed and stabilized by biological processes. Once digested, the stabilized sludge is dewatered through a centrifuge, resulting in biosolids with a moist, soil-like consistency. Significant pathogen reduction is achieved in the ATAD tanks, which create Class A biosolids (defined according to OMRR parameters). Stabilization and dewatering process data are presented in Tables 18 and 19.

Volatile Solids Reduction was determined using sampling points from the sludge entering and existing the ATADs. In previous years, Volatile Solids Reduction was determined from samples in ATAD 3 and ATAD 6. Average Volatile Solids Reduction for 2023 is presented below.

#### Table 20. Stabilization Process Data

| Stabilization Process                            |         |            |
|--------------------------------------------------|---------|------------|
| Total Mass of Sludge Delivered for Stabilization | 101,683 | Tons (dry) |
| % of TSS as VSS in Sludge Feed                   | 84.7    | %          |
| Mass of Biosolids Remaining after Stabilization  | 479.2   | Tons (dry) |

#### **Table 21. Dewatering Process Data**

| Dewatering Process                           |        |                   |  |
|----------------------------------------------|--------|-------------------|--|
| Volume of Biosolids delivered for dewatering | 16,113 | m³                |  |
| Average Volatile Solids Reduction            | 52.72  | %                 |  |
| % solids in biosolids dewatering feed        | 2.97   | %                 |  |
| % solids in dewatered biosolids              | 33.6   | %                 |  |
| Polymer dosage to aid dewatering             | 0.349  | kg/m <sup>3</sup> |  |

## 6.5 Biosolids Management

In 2023, RDN biosolids were beneficially managed in two programs:

- Forest Fertilization
- Soil Fabrication.

## **6.5.1 Forest Fertilization**

Forest fertilization is the biosolids management option used for GNPCC biosolids. GNPCC biosolids were land applied in a forest fertilization project managed by SYLVIS Environmental.

## 6.5.2 Soil Fabrication

Soil fabrication is the biosolids management option used for FCPCC Biosolids. This program operates in partnership with Harmac Pacific (Harmac) at Harmac's kraft mill site in Nanaimo. There, RDN biosolids, wood waste, and mineral soil are blended to fabricate soil for cover material for the Harmac landfill during its landfill closure activities as well as a commercial grade biosolids growing medium (BGM).

In 2023, FCPCC Class A biosolids were used to fabricate BGM. Details of the soil fabrication program are provided in the 2023 Biosolids Management Summary and Compliance Report, completed by SYLVIS Environmental, and attached in Appendix G.

## 6.5.3 Excellence in Biosolids Award

In 2019, the Regional District of Nanaimo won the Northwest Biosolids 'Excellence in Biosolids' Award for the second time. This award presented by Northwest Biosolids recognizes significant contributions to the development and implementation of cost-effective and environmentally beneficial biosolids management practices. The RDN won this award previously in 2013.

# 7) Process Control Monitoring

## 7.1 Ammonia

Ammonia is one of the typical constituents of domestic wastewater. Ammonia can be toxic to fish (freshwater and marine) and is monitored to determine potential impacts to the receiving environment. Ammonia is tested in the influent and effluent weekly. The average ammonia concentration in 2023 in the influent and effluent was 37.4 mg/L and 30.7 mg/L, respectively. Appendix B contains the weekly Ammonia test data for FCPCC for 2023. Results are summarized in Table 22 and Figure 10.

| Month     | Influent Average<br>Ammonia (mg/L) | Effluent Average<br>Ammonia (mg/L) | % Reduction |
|-----------|------------------------------------|------------------------------------|-------------|
| January   | 26.8                               | 29.3                               | -9.2%       |
| February  | 34.5                               | 29.5                               | 14.5%       |
| March     | 35.5                               | 31.2                               | 12.3%       |
| April     | 35.9                               | 26.7                               | 25.8%       |
| May       | 37.7                               | 29.1                               | 22.7%       |
| June      | 40.4                               | 33.7                               | 16.4%       |
| July      | 43.0                               | 36.2                               | 15.7%       |
| August    | 43.0                               | 38.2                               | 11.2%       |
| September | 40.7                               | 34.3                               | 15.7%       |
| October   | 41.7                               | 28.5                               | 31.7%       |
| November  | 32.9                               | 25.5                               | 22.7%       |
| December  | 31.6                               | 24.1                               | 23.7%       |
| Average   | 37.4                               | 30.7                               | 16.9%       |

#### Table 10. 2023 Influent & Effluent Ammonia Concentration



Figure 10. 2023 Influent & Effluent Monthly Average Ammonia Concentration

## 7.2 Nitrate, Nitrite, Alkalinity

Wastewater Services' staff conduct weekly testing of the effluent for nitrate, nitrite, and alkalinity. The average monthly concentration is summarized in Table 23 and graphed in Figures 11 and 12.

| Month     | Effluent Average<br>Nitrate (NO₃) (mg/L) | Effluent Average Nitrite<br>(NO2) (mg/L) | Effluent Average<br>Alkalinity (mg/L) |
|-----------|------------------------------------------|------------------------------------------|---------------------------------------|
| January   | 1.65                                     | 1.047                                    | 223                                   |
| February  | 1.980                                    | 1.003                                    | 214                                   |
| March     | 2.238                                    | 0.833                                    | 231                                   |
| April     | 2.39                                     | 0.674                                    | 205                                   |
| May       | 2.38                                     | 1.016                                    | 236                                   |
| June      | 2.51                                     | 1.363                                    | 202                                   |
| July      | 1.86                                     | 1.070                                    | 243                                   |
| August    | 0.93                                     | 0.693                                    | 256                                   |
| September | 1.39                                     | 1.267                                    | 259                                   |
| October   | 2.02                                     | 1.210                                    | 205                                   |
| November  | 2.76                                     | 1.081                                    | 231                                   |
| December  | 2.66                                     | 1.127                                    | 186                                   |
| Average*  | 2.09                                     | 1.051                                    | 224                                   |

Table 23. Effluent Nitrate, Nitrite, and Alkalinity



Figure 11. 2023 Effluent Nitrate and Nitrite Monthly Average Concentration





## 7.3 Temperature

Wastewater Services' staff monitor the temperature of the influent and effluent daily. Temperature data for 2022 is presented in Appendix B. The average temperature for each month is summarized in Table 24 and graphed in Figure 13.

| Diamah    | Average Tem | perature (°C) |
|-----------|-------------|---------------|
| ivionth   | Influent    | Effluent      |
| January   | 13.3        | 13.8          |
| February  | 13.0        | 13.4          |
| March     | 12.9        | 13.4          |
| April     | 13.7        | 14.3          |
| May       | 16.5        | 17.6          |
| June      | 18.7        | 19.3          |
| July      | 19.8        | 21.0          |
| August    | 20.4        | 21.1          |
| September | 19.7        | 19.9          |
| October   | 18.1        | 18.1          |
| November  | 15.9        | 16.0          |
| December  | 14.5        | 15.1          |
| Average   | 16.4        | 16.9          |

#### Table 24. 2023 Influent & Effluent Temperatures





## 7.3.1 Historical Trends

Historical influent and effluent average temperatures reported over previous years are summarized in Table 25. 2023 data are consistent with historical data.

| Maar | Average Temperature (°C) |          |  |
|------|--------------------------|----------|--|
| Year | Influent                 | Effluent |  |
| 2014 | 16.6                     | 17.2     |  |
| 2015 | 16.9                     | 17.4     |  |
| 2016 | 16.7                     | 17.2     |  |
| 2017 | 16.1                     | 16.6     |  |
| 2018 | 16.3                     | 16.9     |  |
| 2019 | 16.1                     | 16.6     |  |
| 2020 | 16.0                     | 16.5     |  |
| 2021 | 16.7                     | 16.9     |  |
| 2022 | 16.1                     | 16.8     |  |
| 2023 | 16.4                     | 16.9     |  |

#### Table 25. Historical Trends: Influent & Effluent Average Temperature

## 7.4 pH

Wastewater Services' staff monitor the pH of grab samples of the influent and effluent daily. The pH data for FCPCC for 2023 is presented in Appendix B, the average monthly pH data are summarized in Table 26 and Figure 14.

#### Table 26. 2023 Influent & Effluent Average pH

| Month     | Average pH |          |  |
|-----------|------------|----------|--|
| Month     | Influent   | Effluent |  |
| January   | 7.65       | 7.08     |  |
| February  | 7.75       | 7.30     |  |
| March     | 7.87       | 7.33     |  |
| April     | 7.85       | 7.30     |  |
| Мау       | 7.79       | 7.25     |  |
| June      | 7.55       | 7.26     |  |
| July      | 7.67       | 7.26     |  |
| August    | 7.65       | 7.31     |  |
| September | 7.64       | 7.28     |  |
| October   | 7.69       | 7.17     |  |
| November  | 7.60       | 7.15     |  |
| December  | 7.58       | 7.20     |  |
| Average   | 7.69       | 7.24     |  |



Figure 14. 2023 Influent & Effluent Monthly Average pH

## 7.4.1 Historical Trends

Historical average influent and effluent pH values reported previous years are summarized in Table 27. 2023 data are consistent with historical data.

| Voor | Average  | e pH     |
|------|----------|----------|
| Tear | Influent | Effluent |
| 2014 | 7.52     | 6.90     |
| 2015 | 7.79     | 7.07     |
| 2016 | 7.84     | 7.22     |
| 2017 | 7.68     | 7.35     |
| 2018 | 7.67     | 7.35     |
| 2019 | 7.72     | 7.34     |
| 2020 | 7.59     | 7.30     |
| 2021 | 7.61     | 7.31     |
| 2022 | 7.62     | 7.24     |
| 2023 | 7.69     | 7.24     |

## 7.5 Dissolved Oxygen

The dissolved oxygen (DO) of the influent and effluent is measured daily. The average monthly DO concentrations are summarized in Table 28 and graphed in Figure 15.

| Month     | Average Dissolved Oxygen (mg/L) |          |
|-----------|---------------------------------|----------|
|           | Influent                        | Effluent |
| January   | 3.73                            | 5.41     |
| February  | 3.74                            | 5.51     |
| March     | 3.93                            | 5.50     |
| April     | 3.74                            | 5.28     |
| May       | 3.30                            | 5.31     |
| June      | 2.87                            | 5.49     |
| July      | 2.63                            | 5.49     |
| August    | 2.78                            | 5.04     |
| September | 2.82                            | 5.12     |
| October   | 3.04                            | 5.36     |
| November  | 3.06                            | 5.55     |
| December  | 3.92                            | 5.61     |
| Average   | 3.30                            | 5.39     |

#### Table 28. 2023 Influent & Effluent Dissolved Oxygen Concentration




### 7.5.1 Historical Trends

Historical influent and effluent average DO concentration are summarized in Table 29. 2023 data are consistent with historical data.

| Veer | Average Dissolved Oxygen (mg/L) |          |  |  |  |
|------|---------------------------------|----------|--|--|--|
| Tear | Influent                        | Effluent |  |  |  |
| 2014 | 3.04                            | 4.71     |  |  |  |
| 2015 | 3.26                            | 5.11     |  |  |  |
| 2016 | 2.62                            | 4.25     |  |  |  |
| 2017 | 3.44                            | 4.91     |  |  |  |
| 2018 | 3.45                            | 5.01     |  |  |  |
| 2019 | 3.08                            | 5.20     |  |  |  |
| 2020 | 3.36                            | 5.51     |  |  |  |
| 2021 | 2.99                            | 5.32     |  |  |  |
| 2022 | 3.05                            | 5.92     |  |  |  |
| 2023 | 3.30                            | 5.39     |  |  |  |

Table 29. Historical Trends: Influent & Effluent Dissolved Oxygen Concentration

## 8) Resource Consumption

#### 8.1 Chemical Consumption

Table 30 summarizes the cost of chemicals used in the treatment process in 2023.

#### Table 30. 2023 Chemical Consumption

| Chemical                         | Consumption | Units | Cost (\$)* | Use                                             |
|----------------------------------|-------------|-------|------------|-------------------------------------------------|
| Dry Polymer (W-Hydrofloc 1622)   | 5,618       | Kg    | \$53,648   | Dewatering                                      |
| Liquid Polymer (ClearFloc CE405) | 4,398       | Kg    | \$35,620   | Thickening                                      |
| Caustic Soda                     | 1,579       | Kg    | \$1,601    | Odour Control                                   |
| Ferrous Chloride                 | 143,223     | kg    | \$80,921   | Odour Control                                   |
| Sodium Hypochloride              | 29,082      | L     | \$27,919   | Odour Control                                   |
| Actizyme                         |             |       | \$4,463    | Secondary Treatment<br>(Microbiological Growth) |
| Other                            |             |       | \$7,475    | Various chemicals                               |
| Total                            |             |       | \$211,647  |                                                 |

#### 8.1.2 Historical Trends

Annual costs of chemicals consumed in over the last ten years are summarised in Table 31. Pricing has increased since 2020 due the market trends and supply chain issues.

| Year | Dewatering<br>Polymer | Thickening<br>Polymer | Secondary<br>Treatment<br>Polymer | Caustic<br>Soda | Ferrous<br>Chloride | Sodium<br>Hypochlorite | De-<br>Odorizer | De-<br>Foamer | Hydrogen<br>Peroxide | Actizyme | Other   | Total     |
|------|-----------------------|-----------------------|-----------------------------------|-----------------|---------------------|------------------------|-----------------|---------------|----------------------|----------|---------|-----------|
| 2014 | \$41,760              | \$17,785              | \$6,034                           | \$9,630         | \$8,606             | \$11,190               | \$1,935         | \$2,410       | -                    |          |         | \$99,350  |
| 2015 | \$42,680              | \$14,978              | \$3,375                           | \$7,241         | \$9,021             | \$12,348               | \$1,820         | \$5,146       | -                    |          |         | \$96,608  |
| 2016 | \$38,137              | \$13,627              | \$9,563                           | \$7,260         | \$13,015            | \$10,149               | \$0             | \$0           | -                    |          |         | \$91,752  |
| 2017 | \$31,592              | \$16,288              | \$15,754                          | \$393           | \$15,976            | \$11,673               | \$2,018         | \$2,759       | -                    |          |         | \$96,453  |
| 2018 | \$36,467              | \$21,980              | \$133                             | \$1,726         | \$20,798            | \$15,899               | \$1,995         | \$1,576       | -                    |          |         | \$100,574 |
| 2019 | \$35,628              | \$28,071              | -                                 | \$2,060         | \$19,974            | \$34,576               | -               | -             | \$1,862              |          |         | \$122,172 |
| 2020 | \$41,488              | \$27,510              | -                                 | \$879           | \$20,696            | \$24,608               | -               | -             | \$3,724              |          |         | \$118,905 |
| 2021 | \$32,982              | \$25,279              | -                                 | \$7,469         | \$23,765            | \$32,923               | -               | \$3,991       | -                    |          |         | \$126,409 |
| 2022 | \$45,050              | \$25,824              | -                                 | \$8,091         | \$52,306            | \$42,408               | -               | \$4,026       | -                    | \$4,463  |         | \$182,168 |
| 2023 | \$53,648              | \$35,620              | -                                 | \$1,601         | \$80,921            | \$27,919               | -               | -             | -                    | \$4,463  | \$7,475 | \$211,647 |

**Table 31. Historical Trends: Chemical Costs** 

Note:

1. In 2014, use of ferrous chloride was discontinued at Hall Road pump station. Due to a corrosion of the ferrous chloride tank at Bay Avenue pump station, ferrous was only used at FCPCC prior to 2017. It is now only added to the process at FCPCC.

#### 8.2 Electrical Consumption

Historical annual electrical consumption and costs are summarised in Table 32 and graphed in Figure 16. Note: this section reports electrical consumption at the treatment plant only (pump stations are excluded). The cost of electricity excludes federal and provincial taxes.

#### Table 32. Historical Trends: FCPCC Electrical Consumption

| Year | Consumption (kWh) | Cost (\$) |
|------|-------------------|-----------|
| 2014 | 2,103,120         | \$128,146 |
| 2015 | 2,014,928         | \$127,321 |
| 2016 | 2,044,800         | \$157,473 |
| 2017 | 2,031,840         | \$165,277 |
| 2018 | 2,097,360         | \$174,964 |
| 2019 | 2,035,440         | \$170,450 |
| 2020 | 2,048,974         | \$172,096 |
| 2021 | 2,152,216         | \$181,784 |
| 2022 | 2,120,888         | \$176,288 |
| 2023 | 2,015,041         | \$169,614 |

Note: Electrical consumption at the treatment plant only (pump stations are excluded).



Figure 16. Historical Trends: FCPCC Electrical Consumption and Costs (Treatment Plant Only)

#### 8.3 Water Consumption

Water consumption at FCPCC for 2023 was estimated at 1,937 m<sup>3</sup> using water invoices. Table 33 contains the water consumption records over the last eight years. There have been considerable decreases in water consumption due to proactive water monitoring and increased use of reclaimed water in treatment processes. Water use has declined to a new technology to pressurize the seals on pumps using air pressure and water as opposed to constant water flow. Note: this is water consumption at the treatment plant only (pump stations are excluded).

| Year | Consumption (m <sup>°</sup> ) |
|------|-------------------------------|
| 2014 | 8,539*                        |
| 2015 | 5,109                         |
| 2016 | 4,575                         |
| 2017 | 2,013                         |
| 2018 | 4,894                         |
| 2019 | 6,160                         |
| 2020 | 4,815                         |
| 2021 | 4,356                         |
| 2022 | 2,324                         |
| 2023 | 1,937                         |

#### Table 33. Historical Trends: FCPCC Water Consumption

**Notes** \*2014 Water Consumption obtained from WaterTrax records. All other years were from invoices.

# 9) Odour

Odours at the FCPCC were a significant concern prior to 2000, and considerable progress has been made in reducing odours at the FCPCC facility. The odour control system at FCPCC now includes two bioscrubbers, one chemical scrubber, and one biofilter.

RDN staff will continue to monitor the effectiveness of odour control initiatives to ensure the impacts to neighborhoods adjacent to the plant are minimized. The RDN acknowledges the assistance and input from residents in addressing air quality issues around the FCPCC.

### 9.1 Operational Procedures

Wastewater that enters FCPCC comes mainly from domestic sources. Tourism in the summer months substantially increases the flows to the treatment plant, as well as results in more solids. Winter flows are higher, but the solids concentration is lower during this time. TSS and cBOD₅ are measured in the influent and effluent to determine the strength of the wastewater. A higher strength of wastewater in the summer appears to correlate to a higher level of odours throughout the treatment plant.

Influent and effluent temperatures increase during the summer months, thereby also increasing odours. Increased temperature releases additional gas and vapour into the atmosphere causing odours. As a result, odour reports increase in the summer.

The FCPCC staff have a schedule of routine duties that have an impact on odours. In 2013, the air flow through the trickling filters was reversed to avoid stripping odorous compounds and improve odour conditions at the plant. In 2020, the media for the bio-filters was replaced. In 2022, repairs were made to the trickling filter piping which have significantly reduced the number of odour concerns. In 2023, repairs were also completed to the chemical scrubber and replaced the dewatering biofilter media.

## 9.2 Odour Records

The most common sources of odours at wastewater treatment plants are ammonia and hydrogen sulfide gases. At FCPCC, more odour reports are typically received in the summer months due to septage dumping (septic trucks) and higher temperatures resulting in increased biological activity. The concentration of hydrogen sulfide gas in the influent also increases in the summer months.

Odour reports received at FCPCC are routinely recorded on a form and entered into the department's Environmental Management System. The location of the odour, time of day, weather conditions, and current activities at the plant are noted along with the report. Through this system, the Chief Operator and Senior Operator are notified of all reports within 24 hours.

In previous years, many of the odour reports were mistaken as odours from FCPCC but were due to odours from herring roe. Herring spawn along the beaches near FCPCC in the spring and the rotting of these eggs later in the season produces strong odours near the treatment plant. There were no issues with roe in 2022.

The number of odour reports decreased after 2021 to previous years. This is likely related to replacement of the media in the biofilters at FCPCC in 2020 and the trickling filter piping repair in 2022.

Appendix D contains further information on the 15 odour reports received in 2023.

#### 9.2.1 Historical Trends

The odour reports over the last 10 years are summarized in Table 34 and graphed in Figure 17.

| Year | Odour Reports | Multiple Complaint Days |
|------|---------------|-------------------------|
| 2014 | 33            | 6                       |
| 2015 | 4             | 1                       |
| 2016 | 9             | 0                       |
| 2017 | 39            | 6                       |
| 2018 | 61            | 8                       |
| 2019 | 41            | 5                       |
| 2020 | 34            | 2                       |
| 2021 | 6             | 0                       |
| 2022 | 7             | 0                       |
| 2023 | 15            | 1                       |

#### Table 34. Historical Trends: FCPCC - Number of Odour Reports

#### Figure 17. Historical Trends: FCPCC Odour Reports



#### 9.3 Odour Episodes

An odour episode is any disruption in the regular operation of the treatment plant that may cause odour.

- An odour concern in May was related to the cleaning out of the ATAD digesters at FCPCC.
- An odour concern in October was attributed to replacement of the biofilter media in the dewatering building.

#### 9.4 Future Plans

RDN staff will continue to monitor the effectiveness of odour control initiatives to ensure that the impacts on adjacent neighborhoods are minimized.

The RDN has been working in partnership with Vancouver Island University (VIU) researchers to identify, locate, and monitor sources of odours near FCPCC. Monitoring at FCPCC was ongoing in 2023 and identified several odour control systems at FCPCC which could be made more efficient. The design of the expansion project will incorporate the monitoring results. The RDN also established a long-term agreement with VIU for an odour monitoring program.

The RDN is also finalizing Detailed Design of the FCPCC Expansion and Odour Control Upgrade. The project will include significant odour control upgrades at the existing plant and the expansion site.

# 10) Septage Receiving

The total combined volume of Septage and Pump & Haul discharged in 2023 was 2,352,171 Imperial gallons (10,693 m<sup>3</sup>). This volume does not include discharge of NBPCC sludge to FCPCC. These volumes are tabulated in the 2023 NBPCC Annual Report.

### **10.1 Historical Trends**

The volumes of Septage and Pump & Haul waste discharged over the past ten years are summarised in Table 35 and graphed in Figure 18. The volume received has shown an increasing trend. The volume peaked in 2021 and has been gradually decreasing since then. This is likely related to better tracking of volumes discharged due to the installation of a septage meter.

| Year | Total Septage<br>(Imperial Gallons) | Total Pump & Haul<br>(Imperial Gallons) | Combined Total<br>(Imperial Gallons) | Combined Total<br>(m <sup>3</sup> /year) |
|------|-------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------|
| 2014 | 1,039,564                           | 703,950                                 | 1,743,514                            | 7,926                                    |
| 2015 | 986,594                             | 795,197                                 | 1,781,791                            | 8,100                                    |
| 2016 | 1,067,458                           | 847,500                                 | 1,914,958                            | 8,706                                    |
| 2017 | 1,320,987                           | 903,700                                 | 2,224,687                            | 10,114                                   |
| 2018 | 1,277,508                           | 893,594                                 | 2,171,102                            | 9,870                                    |
| 2019 | 1,318,518                           | 984,713                                 | 2,303,231                            | 10,471                                   |
| 2020 | 1,559,241                           | 859,025                                 | 2,418,266                            | 10,994                                   |
| 2021 | 1,938,308                           | 729,999                                 | 2,668,307                            | 12,130                                   |
| 2022 | 1,831,525                           | 726,302                                 | 2,557,827                            | 11,628                                   |
| 2023 | 1,638,123                           | 714,048                                 | 2,352,171                            | 10,693                                   |

| Table 35. | Historical | Trends: Septage  | and Pump | & Haul | <b>Discharged</b> at | E FCPCC |
|-----------|------------|------------------|----------|--------|----------------------|---------|
| Tuble 35. | instoricui | inclias. Septuge | ana ramp | anuu   | Dischargea           |         |



Figure 18. Historical Trends: Annual Septage and Pump & Haul Waste Discharged at FCPCC

### 10.2 Septage Testing

Septage used to be tested quarterly for a series of parameters. In December 2013, the monitoring program discontinued because:

- Sampling of septage is not required for any regulatory authorities as it enters the main waste stream where the final effluent is tested before being discharged to the receiving environment.
- Sufficient historical data created a reference and determined that septage had a negligible impact on overall effluent quality.
- A random sampling program that targets haulers directly may better detect the discharge of unauthorized waste.

In 2019, the RDN implemented a new sampling protocol for testing of septage discharged by haulers at FCPCC. One hauler per quarter was randomly selected, their discharge was tested for a variety of parameters, and results were compared to the Trucked Liquid Waste Rates and Regulations Bylaw No. 1732.

The random septage sampling program has not occurred since 2020, however. Sampling safety issues and bylaw limit review will need to be resolved before this program is resumed.

# 11) Contributory Population and Remaining Plant Capacity

The current FCPCC plant operating capacity is designed for an average daily flow of 12,000 m<sup>3</sup>/day, with a maximum daily flow capacity of 18,360 m<sup>3</sup>/day. Wastewater Services continues to install new

equipment and upgrade existing technology to ensure the future carrying capacity of the treatment plant is adequate and permit levels are not exceeded.

In 2023, the combined average daily flow from FCPCC was 10,417.3 m<sup>3</sup>/day with a maximum daily discharge of 14,663.0 m<sup>3</sup>/day. The estimated population serviced in 2023 was 29,329 with a projected annual growth rate of approximately 1.39 %.

The LWMP states that FCPCC will likely need to be expanded between 2018 and 2025. In 2017, the RDN commissioned a preliminary design study to evaluate expansion options for FCPCC. The detailed design study for the FCPCC Stage 4 expansion and Odour Control Upgrades was ongoing in 2023. The RDN is planning to issue the project to tender in early 2025.

# 12) Environmental Incidents

As part of the RDN's ISO 14001 Environmental Management System certification, records are maintained regarding any environmental incidents that are associated with the RDN's wastewater infrastructure and treatment facilities including spills, leaks, and fires. Environmental incidents may be related to spills, leaks, or fires from the treatment plant, gravity sewer interceptor and force mains conveying wastewater to FCPCC.

 On September 20, 2023, there was an environmental incident related to spill from the digested sludge feed line pipe. The leak occurred when the centrifuge was shut down for the day. Operators were near the pipe and immediately identified the leak. Sludge spilled on the parking lot and on the grass near the Morningstar Creek. It is believed that sludge did not enter the creek. Operations exposed and repaired the pipe, cleaned up the spill, and submitted an end of spill report to regulatory agencies.

More information on this Environmental Incident can be found in Appendix E.

# 13) Conditional Management Plan

On May 1, 2012, a Conditional Management Plan (CMP) for FCPCC came into effect. A CMP is an agreement between Canadian Food Inspection Agency, Environment Canada, Fisheries and Oceans Canada, the British Columbia Ministry of Environment, and the RDN.

The original CMP was renewed several times. The current agreement expires January 31, 2025. The key objectives of the agreement are as follows:

- Provides enhanced management of shellfish harvesting in the Conditionally Classified Harvest Areas adjacent to the FCPCC.
- Outlines the roles and responsibilities of the signatories in the event of a discharge of wastewater into the marine environment from the collection system pump stations that carry wastewater to FCPCC.

No closures or re-openings occurred in 2023. Please refer to Appendix F for the 2023 CMP Annual Report.

# 14) Facility Upgrades & Major Projects

### 14.1 Upgrades and Repairs Completed in 2023

- ATAD Cleaning
- Lee Road and Hall Road Operator Platform Replacement
- Lee Road Genset Installation
- Odour Control repairs to chemical scrubber.

### 14.2 Studies and Projects Completed in 2023

- FCPCC Stage 4 Expansion and Odour Control Upgrade Detailed Design (ongoing)
- Bay Ave Pump Station Upgrade Construction
- Reclaimed water study
- VIU Odour Monitoring Study.
- Contaminants of Emerging Concern Study.

#### 14.3 Upgrades and Repairs Planned for 2024

- Centrifuge #1 Rotating Assembly
- Bay Avenue Pump Station Replacement (Completion of Project)
- Qualicum Beach manhole repairs.

#### 14.4 Studies and Projects Planned for 2024

- FCPCC Stage 4 Expansion and Odour Control Upgrade Detailed Design (ongoing). The tendering of this project is planned for 2025
- Bay Ave Pump Station Upgrade Construction (to be completed)
- ISO 14001:2015 Surveillance Audit.
- FCPCC Biosolids PFAS project.

# 15) Resource Recovery

#### **15.1 Biosolids Reuse**

Since 1999, RDN biosolids have been beneficially used in agriculture, landfill closures, mine reclamation, and forest fertilization. Biosolids management in 2023 is discussed in Section 6.5.

### 15.2 Effluent Reuse

The reuse of effluent in operational processes at FCPCC has decreased the plant's demand for potable water from the community's supply. Effluent was reused to irrigate Morningstar Golf Course in 2023.

### 15.3 Solid Waste Recycling

Wastewater Services has a general recycling program at the treatment plant, initiated as part of the department's Environmental Management System, and continues to recycle waste oils, cardboard, metals, paints and paint thinners.

# 16) Education Programs

### **16.1 Source Control**

In November 2015, the Board approved the new Source Control Bylaw No. 1730 which replaces the old Bylaw No. 1225. This bylaw regulates the discharge of waste into any sewer or drain connected to a sewage facility operated by the RDN. The new bylaw provides a process for issuing Waste Discharge Permits and a new fee structure based on waste strength and volume. The bylaw applies to discharges in municipal collection systems. The Bylaw also contains new prohibited waste items and new provisions for fees and enforcement.

In January 2017, the RDN Board adopted the new Trucked Liquid Waste Rates and Regulations Bylaw No. 1732 which replaces Bylaw Nos. 988, 1218, and 1224. Bylaw No. 1732 introduced more source control provisions including an expanded schedule of prohibited wastes and a new a schedule of restricted wastes. It also introduced more enforcement tools.

#### 16.2 Water Conservation

The RDN has a water conservation and outreach program called Team WaterSmart for municipalities in the region and electoral areas.

The RDN's Board also recently approved a new Water Conservation Plan in 2020. This plan was completed in collaboration with water conservation planning work done by the City of Parksville, Town of Qualicum Beach, and other member municipalities.

#### 16.3 Open House

Open houses give the public an opportunity to tour the facilities, learn about recent upgrades, browse information, and ask questions. There was an Open House at FCPCC on June 3, 2023.

#### 16.4 SepticSmart

SepticSmart is and RDN educational program that provides information on septic system operation and maintenance. It aims to prolong the life of functioning systems in the region. The SepticSmart program includes an information package, annual workshops and a rebate program. More information on the SepticSmart Program is available at: <u>https://www.rdn.bc.ca/septicsmart</u>.

Two SepticSmart workshops were held in 2023.

In 2014, the RDN launched the SepticSmart Rebate program to: 1) make it easier for residents to manage septic system maintenance, 2) promote long-term maintenance habits, and 3) maximize the longevity of existing onsite systems. The SepticSmart Rebate program was offered in 2023. To date, more than \$365,000 in rebates have been issued to homeowners towards septic tank repairs and maintenance as part of this program.

### 16.5 Liquid Waste Management Plan

The RDN Liquid Waste Management Plan (LWMP) is a 20-year plan to support sustainable wastewater management in the region. This plan authorizes the RDN to find community-driven and cost-effective solutions to protect public health and achieve a standard level of wastewater treatment over a reasonable timeframe. The BC Minister of the Environment approved the RDN's LWMP in October 2014. An annual report on LWMP implementation will be submitted under separate cover in June.

In December 2023, the RDN submitted a request to the Province of BC for an LWMP Amendment.

#### 16.6 Website

The RDN's Wastewater Services department website www.rdn.bc.ca/wastewater-services is regularly updated and provides education material related to wastewater treatment, environmental management, pollution prevention and septic system maintenance (the SepticSmart program).

The <u>Get Involved</u> portion of the RDN website is an online public engagement space that hosts outreach information specific to the regional projects. In 2023, the following FCPCC projects were highlighted on the Get Involved page:

- <u>FCPCC Expansion and Odour Control Upgrade Project</u>
- Bay Avenue Pump Station Replacement.

# 17) Conclusions

Table 36 and 37 summarize the 2023 permit monitoring data for FCPCC and Morningstar Golf Course respectively:

Table 36. FCPCC Summary of Compliance

| Summary of Compliance         | Permit        | 2023                         | Permit Exceedances |
|-------------------------------|---------------|------------------------------|--------------------|
| Maximum Daily Flow (Outfall)  | 16,000 m³/day | 14,663.0 m³/day              | 0                  |
| Average Daily Flow            | -             | 10,217.9 m <sup>3</sup> /day |                    |
| Average Daily cBOD₅ (Outfall) | 45 mg/L       | 12.3 mg/L                    | 0                  |
| Average Daily TSS (Outfall)   | 60 mg/L       | 15.8 mg/L                    | 0                  |

| Summary of Compliance           | Permit                    | 2023         | Permit Exceedances |
|---------------------------------|---------------------------|--------------|--------------------|
| Maximum Daily Flow              | 1,370 m <sup>3</sup> /day | 1,167 m³/day | 0                  |
| Average Daily cBOD <sub>5</sub> | 20 mg/L                   | 8.85 mg/L    | 0                  |
| Average Daily TSS               | 30 mg/L                   | 10.3 mg/L    | 0                  |

 Table 37. FCPCC Discharge to Morningstar Golf Course Summary of Compliance

#### **17.1 Flows**

The average daily flow discharged from the treatment plant and outfall in 2023 was 10,417.3 m<sup>3</sup>/day. The total annual flow was 3,802,325.6 m<sup>3</sup>. The highest daily outfall flow was 14,663.0 m<sup>3</sup>/day. There were no flow maximum day exceedances in 2023.

The average daily flow to the outfall in 2023 was 10,217.6 m<sup>3</sup>/day. The total annual flow was 3,729,410 m<sup>3</sup>. The highest daily outfall flow was 14,663.0 m<sup>3</sup>/day. There were no flow maximum day exceedances in 2023.

From May to September, effluent was discharged to lagoons on Morningstar Golf Course for irrigation for a total of 79 days. The Morningstar Golf Course effluent reuse program resumed in 2023. The maximum permitted flow of that can be discharged to the lagoons is 1,370 m<sup>3</sup>/day. The total volume of effluent discharged the Morningstar Golf Course effluent reuse program in 2023 was 72,915.5 m<sup>3</sup>.

## **17.2** Carbonaceous Biochemical Oxygen Demand (cBOD<sub>5</sub>)

The average  $cBOD_5$  concentration for influent and outfall effluent was 231 mg/L and 12.3 mg/L, respectively. The average  $cBOD_5$  removal efficiency in 2023 was approximately 94.5%. The average  $cBOD_5$  concentration for effluent discharged to Morningstar Golf Course was 8.85 mg/L.

There were no cBOD<sub>5</sub> exceedances for the FCPCC effluent, or for discharge to the Morningstar Golf Course effluent reuse program.

## 17.3 Total Suspended Solids (TSS)

The average TSS concentration for influent and outfall effluent was 390 mg/L and 15.8 mg/L, respectively. The average TSS removal efficiency in 2023 was approximately 95.6 %. The average cBOD<sub>5</sub> concentration for effluent discharged to Morningstar Golf Course was 10.3 mg/L.

There were no TSS permit exceedances in 2023 of the effluent to the outfall or for discharge to Morningstar Golf Course.

### **17.4** General Parameters, Metals, Volatile and Semi-Volatile Compounds

Results reported for 2023 for all general parameters, metals, volatile and semi-volatile compounds were consistent with previous years. Note, only one sample is taken per year so limited conclusions can be made on trending of the parameters.

### **17.5 Biosolids Quality**

SYLVIS conducts fecal coliform and full parameter testing as the Qualified Professional for the biosolids soil fabrication program at Harmac. SYLVIS test results are summarized in the 2023 Management of RDN Biosolids (see Appendix G).

In the RDN sampling program, FCPCC biosolids met Class A standards for metals and fecal coliforms. Ten fecal coliform samples and two full parameter samples were taken.

## Appendix A – Waste Management Permit No. PE-4200 & Amendments



Province of British Columbia Ministry of Environment

Vancouver Island Region : Regional Headquarters 2569 Kerworth Road Nanaimo British Columbia V9T 4P7 Telephone: (604) 758-3951

JUL 10 1990 File: PE-4200

REGISTERED MAIL

Regional District of Nanaimo 6300 Hammond Bay Road Lantzville, British Columbia VOR 2HO

Gentlemen:

#### LETTER OF TRANSMITTAL

Enclosed is a copy of amended Permit No. PE-4200, issued under the provisions of the Waste Management Act, in the name of Regional District of Nanaimo. Your attention is respectfully directed to the terms and conditions outlined in the Permit. An annual fee for Permit<sup>‡</sup>. No. PE-4200 will be determined on the basis of your industrial code and capacity in accordance with the Waste Management Fees Regulation.

The administration of this Permit will be carried out by staff from our Regional Office located at 2569 Kenworth Road, Nanaimo, British Columbia, V9T 4P7 (telephone 758-3951). Plans, data and reports pertinent to the Permit are to be submitted to the Regional Waste Manager at this address.

You will note that values have been expressed in the International System of Units (SI). These units are to be used in submitting monitoring results and any other information in connection with this Permit.

This Permit does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority shall rest with the Permittee.

Yours very truly,

101

G. E. Oldham, P. Eng. Regional Waste Manager

MARDS.90 Enclosure

EAB 09/00/20

Becycled Paper



MINISTRY OF ENVIRONMENT

#### PERMIT

Under the Provisions of the Waste Management Act

REGIONAL DISTRICT OF NANAIMO 6300 Hammond Bay Road Lantzville, British Columbia VOR 2H0

is hereby authorized to discharge effluent from a municipal sewage system located within the Regional District of Nanaimo to the Strait of Georgia and to storage lagoons at the Morningstar Golf Course near Parksville, British Columbia

This permit has been issued under the terms and conditions prescribed in the attached Appendices

01, 02, A-1, A-2, B-1, B-2, C-1 and C-2

ŧ

Regional Waste Manager Permit No. <u>PE-4200</u>

|            | Date | issued:  | Janu | ary | 16,  | 1976 |  |
|------------|------|----------|------|-----|------|------|--|
|            | Date | amended: | JU   | 10  | 1990 |      |  |
| Þm         | 28.0 | 5-70     |      |     |      |      |  |
| A-         | 20.5 | - 90     |      |     |      |      |  |
| <b>RHh</b> | 09/0 | 4/31     |      |     |      |      |  |

ENV 2093



MINISTRY OF ENVIRONMENT Waste Management Branch

#### APPENDIX 01

to Permit No. PE-4200

#### (Effluent)

- (a) The discharge of effluent to which this appendix is applicable is from a municipal sewage system servicing the Parksville and Qualicum Beach area as shown on the attached Appendix A-1.
- (b) The maximum rate at which effluent may be discharged is  $16\ 000\ \text{m}^3/\text{d}$  .
- (c) The characteristics of the effluent shall be equivalent to or better than: 5-day Biochemical Oxygen Demand - 45 mg/L Total Suspended Solids - 60 mg/L.
- (d) The works authorized are screening, degritting and ancilliary facilities, a secondary treatment plant, sludge digestion and dewatering facilities and an outfall with diffuser extending 2440 m from mean low water to a depth of 61 m below mean low water and related appurtenances approximately located as shown on the attached Appendix A-1.
- (e) The location of the facilities from which the effluent originates and to which this appendix is appurtenant is Lot 2, Plan 2570, District Lot 28, Nanoose District.
- (f) The location of the point of discharge and to which this appendix is appurtenant is the Strait of Georgia off the mouth of French Creek.
- (g) Those works authorized must be completed and in operation on and from the date of this appendix.

| Date issued:  | January 16, 1976 |
|---------------|------------------|
| Date amended: | JUL 1 0 1990     |
| MM09.05.90    |                  |

ŧ

Regional Waste Manager

E 28.5.90 PAB 03/04/90

ENV. 2096 w-817

| MINISTRY OF ENVIRONMENT                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WASTE MANAGEMENT BRANCH                                                                                                                                       |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
| to Permit No. PE-4200                                                                                                                                         |
| (Effluent)                                                                                                                                                    |
| (a) The discharge of effluent to which this appendix is applicable<br>is from a municipal sewage treatment facility as shown on the<br>attached Appendix A-2. |
| (b) The maximum rate at which effluent may be discharged is 1 370 m <sup>3</sup> /d.                                                                          |
| (c) The characteristics of the offluent stall to contract the                                                                                                 |
| (c) the characteristics of the effluent shall be equivalent to or<br>better than:                                                                             |
| 5-day Biochemical Oxygen Demand - 20 mg/L;                                                                                                                    |
| Total Suspended Solids - 30 mg/L.                                                                                                                             |
|                                                                                                                                                               |
| (d) The works authorized are a secondary sewage treatment plant -                                                                                             |
| pump station and pipeline, and related appurtenances                                                                                                          |
| approximately located as shown on the attached Appendix A-2.                                                                                                  |
|                                                                                                                                                               |
|                                                                                                                                                               |
| (e) The location of the facilities from which the effluent                                                                                                    |
| Plan 2570, District Lot 28, Nanoose District.                                                                                                                 |
|                                                                                                                                                               |
|                                                                                                                                                               |
| (f) The location of the point of discharge and to which this                                                                                                  |
| appendix is appurtenant is a pipeline to storage lagoons                                                                                                      |
| situated on the northern half of District Lot 83. Nanoose Land                                                                                                |
| District.                                                                                                                                                     |
|                                                                                                                                                               |
|                                                                                                                                                               |
| (g) Those works authorized must be completed and in operation on                                                                                              |
| and from the date of this appendix.                                                                                                                           |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
| 11                                                                                                                                                            |
| Pate issued [1111 10 1000                                                                                                                                     |
|                                                                                                                                                               |
| Date amended: Regional Waste Manager                                                                                                                          |
| Jun 20,05.70                                                                                                                                                  |
| CP.7.85 R                                                                                                                                                     |
| RAB COloular                                                                                                                                                  |
|                                                                                                                                                               |
| ENV 2096 warz                                                                                                                                                 |
| AND THE AND THE ADDRESS OF ADDRESS AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDR                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |





|                | MINISTRY OF ENVIRONMENT<br>Waste Management Branch<br>APPENDIX B-1<br>to Permit No. PE-4200                                                                                                                                                                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α.             | MAINTENANCE_OF_WORKS                                                                                                                                                                                                                                                                         |
| -              | The Permittee shall inspect the pollution control works<br>regularly and maintain them in good working order. Notify<br>the Regional Waste Manager of any malfunction of these<br>works.                                                                                                     |
| в.             | EMERGENCY PROCEDURES                                                                                                                                                                                                                                                                         |
|                | In the event of an emergency or condition beyond the control<br>of the Permittee which prevents continuing operation of the<br>approved method of pollution control, the Permittee shall<br>immediately notify the Regional Waste Manager and take<br>appropriate remedial action.           |
| c. <u>1</u>    | BYPASSES                                                                                                                                                                                                                                                                                     |
|                | The discharge of effluent which has bypassed the authorized<br>works is prohibited unless the approval of the Director or the<br>Regional Waste Manager is obtained and confirmed in writing.                                                                                                |
| D.             | PROCESS MODIFICATIONS                                                                                                                                                                                                                                                                        |
|                | The Permittee shall notify the Regional Waste Manager prior<br>to implementing changes to any process that may affect the<br>quality and/or quantity of the discharge.                                                                                                                       |
| Ε.             | OUTFALL INSPECTION                                                                                                                                                                                                                                                                           |
|                | The Permittee shall conduct a dye test on the outfall line<br>authorized in Appendix Ol (or inspect by another method<br>approved by the Regional Waste Manager) once every five years<br>or as may otherwise be required by the Regional Waste<br>Manager.                                  |
| F              | DISINFECTION                                                                                                                                                                                                                                                                                 |
|                | Although disinfection of the effluent discharge authorized by<br>Appendix Ol is not required at this time, suitable provisions<br>should be made to include disinfection facilities in the<br>future. If disinfection is by chlorination, dechlorination<br>facilities may also be required. |
| Date<br>Date   | issued: JUL 1.0.1990 <u>J.E.C.</u><br>amended: Regional Waste Manager                                                                                                                                                                                                                        |
| AM 28.05       | . 50                                                                                                                                                                                                                                                                                         |
| RAS 03/00      | 4/90                                                                                                                                                                                                                                                                                         |
| ENV. 2096 wair |                                                                                                                                                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                              |

| MINISTRY OF ENVIRONMENT<br>Waste Management Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPENDIX B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $P = \frac{1}{2} $ |
| to remit No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G. <u>SLUDGE WASTING AND DISPOSAL</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sludge wasted from the treatment plant shall be disposed of<br>to a site and in a manner approved by the Regional Waste<br>Manager.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H. FEFLUENT UPGRADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bred on possiving environment positiving data and/or other i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Based on receiving environment monitoring data and/or other<br>information obtained in connection with this discharge, the<br>Permittee may be required to provide additional treatment<br>facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date issued: UUL 10 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date amended: Regional Waste Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sm 28 05 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28.5-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ran 09/04/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ENIV 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ein v. 2070 wei?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| MINISTRY OF ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WASTE MANAGEMENT BRANCH                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                  |
| APPENDIX                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                  |
| to Permit No. $P = -4200$                                                                                                                                                                                                                                                                                                                                                        |
| A. SAMPLING AND ANALYSIS                                                                                                                                                                                                                                                                                                                                                         |
| The Permittee shall install a suitable sampling facility and obtain a grab sample of the effluent once every day. The sample shall be analyzed on a daily basis for Total Suspended Solids and on a weekly basis for 5-day Biochemical Oxygen                                                                                                                                    |
| Once per year a composite sample, over an eight-hour period,<br>shall be taken during a low flow period in July or August and<br>analyzed for parameters such as metals, volatile organics,<br>phenolics, organochlorine pesticides, acid extractable<br>herbicides, anions, and inorganics. The Regional Waste<br>Manager shall advise the Permittee in writing of the specific |
| B. FLOW MEASUREMENT                                                                                                                                                                                                                                                                                                                                                              |
| For the discharge authorized by Appendix Ol, provide and maintain a suitable flow measuring device and record once per day the effluent volume discharged over a 24-hour period.                                                                                                                                                                                                 |
| C. SAMPLING AND ANALYTICAL PROCEDURES                                                                                                                                                                                                                                                                                                                                            |
| Sampling and flow measurement shall be carried out in accordance with the procedures described in "Field Criteria for Sampling Effluents and Receiving Waters", April 1989.                                                                                                                                                                                                      |
| Analyses are to be carried out in accordance with procedures<br>described in "A Laboratory Manual for the Chemical Analysis<br>of Waters, Wastewaters, Sediments and Biological Materials,<br>(1976 edition including updates)", April 1989.                                                                                                                                     |
| Copies of the above manuals are available from the Data<br>Standards Group, Ministry of Environment, 3800 Wesbrook Mall,<br>Vancouver, British Columbia, V6S 2L9, at a cost of \$20.00 and<br>\$70.00, respectively, and are also available for inspection<br>at all Waste Management offices.                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                  |
| Date issued: _ JUL 10 toop                                                                                                                                                                                                                                                                                                                                                       |
| Date amended:                                                                                                                                                                                                                                                                                                                                                                    |
| Regional Waste Manager                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                  |
| V. 2096 WAR - 4. 7. 90                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                  |



MINISTRY OF ENVIRONMENT Waste Management Branch

#### APPENDIX C-2

to Permit No. PE-4200

#### D. RECEIVING ENVIRONMENT MONITORING

At the discretion of the Regional Waste Manager, the Permittee may be required to conduct a receiving environment monitoring program for the discharge authorized by Appendix OI. The program shall be established in consultation with the Regional Waste Manager, who will advise the Permittee in writing of the program requirements.

E. REPORTING

Maintain data of analyses and flow measurements for inspection and once per month submit the data, suitably tabulated, to the Regional Waste Manager for the previous month's monitoring. The first report is to be submitted by September 30, 1990.

| Date | terue de | (1) (1 | 1 | 0 | 199 <b>0</b> |  |
|------|----------|--------|---|---|--------------|--|
| Date | issued:  | JUL    |   | v | 1990         |  |

Date amended:

Regional Waste Manager

Fais 05/07/90 ENV 2096 WAIT + 4-7.90 The 09.07.90

BC and Environment Province of Environmental Protection Divisio **Fritish Columbia** 777 Broughton Street Victoria Ministry of British Columbia Environment, Lands and Parks V8V 1X5 Telephone: (604) 387-9974 Facsimile: (604) 356-9836 1. 1 File: PE-4200 June 17, 1993 Regional District of Nanaimo 6300 Hammond Bay Road Lantzville, British Columbia VOR 2HO Dear Permittee: Re: Notification of Amendment to Permit No. PE-4200 Please note that Permit No. PE-4200, issued under the provisions of the Waste Management Act, in the name of Regional District of Nanaimo is amended by adding to Appendix B-2 the following clauses: (h) FACILITY CLASSIFICATION The Permittee shall classify the wastewater treatment facility authorized in part (d) of Appendix No. 01 (the facility) and the classification shall be maintained with the "British Columbia Water and Wastewater Operators Certification Program Society" (BCWWOCPS). The Permittee shall submit an application to classify the facility to BCWWOCPS by August 1, 1993. Although the facility may have already been voluntarily classified previously, an application for classification must be submitted by the above date. (i) OPERATOR CERTIFICATION If the facility is classified by the BCWWOCPS (the Program) at Level II or higher, the Permittee shall ensure that all operators of the facility shall be certified by the Program to a Class I level, at a minimum, by December 1, 1994. Operators in Training: The Permittee shall ensure that all operators in training (OIT) working at the facility classified by the BCWWOCPS at Level II or higher shall be required to successfully pass an OIT examination within three (3) ../2 SIS, UNBLEACHED PULP British Columbia Handle with care Printed on Recycled Paper

months of commencement of employment at the facility. The OIT certificate shall be valid for fifteen (15) months from the date of issue. Prior to the expiry date of the OIT certificate, but not sooner than twelve (12) months from the date when the OIT commenced facility operation, the OIT shall successfully complete a Class I certification examination in order to continue to operate at the facility.

#### Chief Operator: Level II or higher

If the facility is classified by the BCWWOCPS at Level II or higher, the Permittee shall designate at least one operator to be the "Chief Operator" of the facility by December 1, 1996. The "Chief Operator" shall be certified at a Class II level, at a minimum.

After **December 1, 1996,** no person shall have "Direct Responsible Charge", as defined by the BCWWOCPS, of a municipal wastewater treatment facility classified at Level II or higher unless they possess a valid operator's certificate not more than one level below the classification level of the facility.

#### Chief Operator: Level III and IV

If the facility is classified by the BCWWOCPS at Level III, the Permittee shall designate a "Chief Operator", certified at a Class III level by **December 1**, **1998**.

If the facility is classified by the BCWWOCPS at Level IV, the Permittee shall designate a "Chief Operator", certified at a Class IV level by **December 1**, **1998**.

All other terms and conditions of Permit No. PE-4200 remain in full force and effect. If you have any questions regarding this amendment please contact John Finnie at 751-3183.

Yours truly,

R.J. Driedger, Deputy Director of Waste Management

cc: Ted Oldham BCWWOCPS

DB Act 14 BMM

August 24, 1994

File: PE-4200

Regional District of Nanaimo 6300 Hammond Bay Rd PO Box 40 Lantzville BC VOR 2H0

ATTENTION: Mike Donnelly Manager of Operations

Dear Mike Donnelly:

Re: Monitoring of French Creek Pollution Control Centre Effluent

As outlined in Appendix C-1 to Permit PE-4200, the Regional District of Nanaimo is required to obtain a composite sample of the effluent once per year during July or August and have the sample analyzed for several parameters. The exact parameters were listed in our letter to you dated July 17, 1990 (copy enclosed). Our records indicate that the Regional District last sampled for these specific parameters on July 16, 1992.

Environmental Protection staff have reviewed the results of your July, 1992 sampling. Since the analysis shows that the levels meet the ministry's 1994 <u>Approved and Working</u> <u>Criteria for Water Quality</u>, we advise you that repeating this sampling procedure is not necessary at this time, although it may be required in the future.

If you have any questions or concerns, please contact Al Leuschen, P. Eng., or Bernie MacKay of this office at 751-3100.

Yours truly,

J. O. Finnie, P.Eng. Head, Municipal & Environmental Safety Sections Environmental Protection (DB/dpc %<sup>2</sup> monitor.db e<sup>A0</sup> Enclosure

## Appendix B – Internal Flow Monitoring and Laboratory Raw Data (Permit Data)

|          | 2023 (   | Combin  | ed Flow        | vs to Ou | tfall an | d Morn  | ingstar | Golf Co | urse (C | ubic Me | etres)  |         |
|----------|----------|---------|----------------|----------|----------|---------|---------|---------|---------|---------|---------|---------|
| Day      | Jan      | Feb     | March          | April    | May      | June    | July    | Aug     | Sept    | Oct     | Nov     | Dec     |
| 1        | 10,547.0 | 9,814   | 10,400         | 9,705    | 10,036   | 10,060  | 10,410  | 10,567  | 10,211  | 9,708   | 11,146  | 11,189  |
| 2        | 10,890.2 | 9,747   | 11,059         | 9,763    | 9,778    | 10,199  | 10,489  | 10,337  | 10,054  | 10,292  | 11,111  | 10,834  |
| 3        | 10,429.8 | 10,107  | 10,848         | 9,654    | 9,891    | 10,201  | 10,669  | 10,614  | 9,707   | 9,709   | 10,703  | 10,741  |
| 4        | 10,392.2 | 10,189  | 12,690         | 9,608    | 10,180   | 10,281  | 10,484  | 10,537  | 9,934   | 9,570   | 11,230  | 14,463  |
| 5        | 10,609.1 | 10,095  | 12,233         | 9,678    | 11,043   | 10,355  | 10,298  | 10,472  | 9,773   | 9,488   | 11,004  | 12,410  |
| 6        | 10,626.4 | 10,142  | 12,414         | 10,252   | 10,397   | 10,075  | 10,378  | 10,206  | 9,719   | 9,670   | 11,296  | 11,662  |
| 7        | 11,370.1 | 9,998   | 11,341         | 10,123   | 10,374   | 10,155  | 10,545  | 10,467  | 9,820   | 9,781   | 10,772  | 11,019  |
| 8        | 11,581.9 | 9,669   | 11,033         | 10,451   | 10,203   | 10,236  | 10,269  | 10,674  | 9,801   | 9,816   | 10,411  | 10,670  |
| 9        | 11,740.5 | 9,857   | 10,667         | 11,007   | 10,127   | 11,019  | 10,034  | 10,632  | 9,736   | 9,794   | 10,287  | 12,189  |
| 10       | 11,027.9 | 9,807   | 10,602         | 10,571   | 10,188   | 10,407  | 10,453  | 10,196  | 10,059  | 9,981   | 11,988  | 11,461  |
| 11       | 10,902.6 | 9,813   | 10,417         | 10,197   | 9,986    | 10,359  | 10,030  | 10,409  | 9,853   | 9,705   | 11,977  | 11,068  |
| 12       | 12,914.2 | 10,009  | 10,489         | 10,004   | 9,906    | 10,199  | 10,304  | 10,239  | 9,554   | 9,442   | 11,541  | 10,970  |
| 13       | 13,259.7 | 9,887   | 10,456         | 10,171   | 10,104   | 10,100  | 10,333  | 10,108  | 9,642   | 9,469   | 11,171  | 11,578  |
| 14       | 12,278.2 | 9,733   | 10,402         | 9,987    | 9,863    | 10,359  | 10,202  | 10,330  | 9,694   | 9,427   | 10,683  | 12,137  |
| 15       | 11,640.6 | 9,645   | 10,201         | 10,009   | 9,947    | 10,148  | 10,155  | 10,296  | 9,614   | 9,732   | 10,684  | 11,814  |
| 16       | 11,344.3 | 9,731   | 10,014         | 10,086   | 10,058   | 9,844   | 10,296  | 10,429  | 9,556   | 10,875  | 10,607  | 11,354  |
| 17       | 11,092.7 | 9,954   | 10,080         | 10,232   | 9,932    | 10,444  | 10,270  | 10,385  | 9,587   | 11,524  | 10,386  | 11,226  |
| 18       | 11,306.3 | 10,260  | 10,142         | 10,397   | 9,942    | 10,393  | 10,315  | 10,363  | 9,486   | 14,663  | 10,576  | 11,433  |
| 19       | 10,822.8 | 10,035  | 10,170         | 10,167   | 10,340   | 10,712  | 10,469  | 10,157  | 9,580   | 11,656  | 10,285  | 11,935  |
| 20       | 10,586.7 | 10,260  | 10,395         | 10,199   | 10,316   | 10,229  | 10,221  | 10,373  | 9,576   | 9,952   | 10,168  | 11,614  |
| 21       | 10,640.6 | 10,148  | 9,966          | 10,201   | 10,234   | 10,187  | 10,413  | 11,275  | 9,583   | 10,692  | 10,280  | 11,176  |
| 22       | 10,449.9 | 9,797   | 9,909          | 10,409   | 10,787   | 10,067  | 10,297  | 10,224  | 9,509   | 10,273  | 9,918   | 11,620  |
| 23       | 10,311.0 | 9,436   | 10,256         | 10,424   | 10,322   | 10,122  | 10,050  | 10,120  | 9,667   | 10,209  | 9,649   | 11,373  |
| 24       | 10,144.3 | 9,907   | 9 <i>,</i> 855 | 10,498   | 10,322   | 10,037  | 10,297  | 10,051  | 9,786   | 13,960  | 9,677   | 11,371  |
| 25       | 9,913.1  | 10,017  | 9,883          | 9,651    | 10,249   | 10,060  | 10,015  | 9,603   | 10,021  | 12,498  | 9,775   | 12,861  |
| 26       | 9,893.6  | 10,193  | 9,796          | 9,804    | 10,236   | 10,435  | 10,238  | 10,145  | 9,981   | 11,040  | 9,828   | 12,899  |
| 27       | 9,969.5  | 10,206  | 9,755          | 9,926    | 10,128   | 10,101  | 10,330  | 10,023  | 10,215  | 10,442  | 9,898   | 12,878  |
| 28       | 10,068.4 | 10,137  | 9,585          | 9,896    | 10,087   | 10,233  | 10,358  | 10,189  | 9,679   | 10,337  | 9,824   | 13,093  |
| 29       | 9,746.5  |         | 9,823          | 9,884    | 10,192   | 9,989   | 10,344  | 10,193  | 9,838   | 10,210  | 9,904   | 12,173  |
| 30       | 9,738.0  |         | 9,573          | 9,851    | 10,186   | 10,578  | 10,394  | 10,027  | 9,498   | 10,226  | 10,196  | 11,864  |
| 31       | 9,920.7  |         | 9,679          |          | 9,972    |         | 10,430  | 10,147  |         | 9,796   |         | 11,442  |
| Total:   | 336,159  | 278,591 | 324,134        | 302,803  | 315,323  | 307,584 | 319,786 | 319,788 | 292,732 | 323,939 | 316,973 | 364,514 |
| Average: | 10,844   | 9,950   | 10,456         | 10,093   | 10,172   | 10,253  | 10,316  | 10,316  | 9,758   | 10,450  | 10,566  | 11,759  |
| Minimum: | 9,738    | 9,436   | 9,573          | 9,608    | 9,778    | 9,844   | 10,015  | 9,603   | 9,486   | 9,427   | 9,649   | 10,670  |
| Maximum: | 13,260   | 10,260  | 12,690         | 11,007   | 11,043   | 11,019  | 10,669  | 11,275  | 10,215  | 14,663  | 11,988  | 14,463  |

| 2023 Morningstar Flows (Cubic Metres) |     |     |       |       |        |        |        |        |       |     |     |     |
|---------------------------------------|-----|-----|-------|-------|--------|--------|--------|--------|-------|-----|-----|-----|
| Day                                   | Jan | Feb | March | April | May    | June   | July   | Aug    | Sept  | Oct | Nov | Dec |
| 1                                     | 0   | 0   | 0     | 0     | 0      | 1,057  | 0      | 0      | 460   | 0   | 0   | 0   |
| 2                                     | 0   | 0   | 0     | 0     | 0      | 1,067  | 0      | 0      | 976   | 0   | 0   | 0   |
| 3                                     | 0   | 0   | 0     | 0     | 111    | 1,033  | 349    | 675    | 0     | 0   | 0   | 0   |
| 4                                     | 0   | 0   | 0     | 0     | 931    | 0      | 6      | 766    | 0     | 0   | 0   | 0   |
| 5                                     | 0   | 0   | 0     | 0     | 974    | 1,040  | 0      | 893    | 0     | 0   | 0   | 0   |
| 6                                     | 0   | 0   | 0     | 0     | 987    | 782    | 0      | 0      | 98    | 0   | 0   | 0   |
| 7                                     | 0   | 0   | 0     | 0     | 992    | 778    | 0      | 0      | 0     | 0   | 0   | 0   |
| 8                                     | 0   | 0   | 0     | 0     | 1,012  | 876    | 817    | 1,058  | 0     | 0   | 0   | 0   |
| 9                                     | 0   | 0   | 0     | 0     | 1,033  | 1,075  | 1,017  | 1,036  | 0     | 0   | 0   | 0   |
| 10                                    | 0   | 0   | 0     | 0     | 1,053  | 0      | 432    | 1,036  | 0     | 0   | 0   | 0   |
| 11                                    | 0   | 0   | 0     | 0     | 1,052  | 0      | 1,031  | 0      | 0     | 0   | 0   | 0   |
| 12                                    | 0   | 0   | 0     | 0     | 1,077  | 0      | 1,027  | 1,031  | 0     | 0   | 0   | 0   |
| 13                                    | 0   | 0   | 0     | 0     | 1,069  | 0      | 762    | 0      | 0     | 0   | 0   | 0   |
| 14                                    | 0   | 0   | 0     | 0     | 1,072  | 1,057  | 0      | 1,023  | 0     | 0   | 0   | 0   |
| 15                                    | 0   | 0   | 0     | 0     | 0      | 1,043  | 525    | 0      | 0     | 0   | 0   | 0   |
| 16                                    | 0   | 0   | 0     | 0     | 0      | 1,054  | 0      | 1,005  | 0     | 0   | 0   | 0   |
| 17                                    | 0   | 0   | 0     | 0     | 0      | 925    | 802    | 0      | 0     | 0   | 0   | 0   |
| 18                                    | 0   | 0   | 0     | 0     | 0      | 0      | 894    | 0      | 0     | 0   | 0   | 0   |
| 19                                    | 0   | 0   | 0     | 0     | 0      | 0      | 974    | 0      | 0     | 0   | 0   | 0   |
| 20                                    | 0   | 0   | 0     | 0     | 0      | 905    | 1,011  | 0      | 0     | 0   | 0   | 0   |
| 21                                    | 0   | 0   | 0     | 0     | 0      | 974    | 1,012  | 970    | 0     | 0   | 0   | 0   |
| 22                                    | 0   | 0   | 0     | 0     | 0      | 1,009  | 0      | 962    | 0     | 0   | 0   | 0   |
| 23                                    | 0   | 0   | 0     | 0     | 0      | 1,027  | 0      | 985    | 0     | 0   | 0   | 0   |
| 24                                    | 0   | 0   | 0     | 0     | 0      | 993    | 1,035  | 996    | 0     | 0   | 0   | 0   |
| 25                                    | 0   | 0   | 0     | 0     | 0      | 1,050  | 1,034  | 1,014  | 0     | 0   | 0   | 0   |
| 26                                    | 0   | 0   | 0     | 0     | 1,074  | 1,052  | 1,070  | 336    | 0     | 0   | 0   | 0   |
| 27                                    | 0   | 0   | 0     | 0     | 1,051  | 979    | 0      | 0      | 0     | 0   | 0   | 0   |
| 28                                    | 0   | 0   | 0     | 0     | 0      | 1,019  | 1,062  | 0      | 0     | 0   | 0   | 0   |
| 29                                    | 0   |     | 0     | 0     | 1,052  | 982    | 1,084  | 1,035  | 0     | 0   | 0   | 0   |
| 30                                    | 0   |     | 0     | 0     | 1,108  | 0      | 0      | 1,015  | 0     | 0   | 0   | 0   |
| 31                                    | 0   |     | 0     |       | 1,167  |        | 0      | 1,010  | 0     | 0   |     | 0   |
| Total:                                | 0   | 0   | 0     | 0     | 16,815 | 21,777 | 15,944 | 16,846 | 1,534 | 0   | 0   | 0   |
| Average:                              | 0   | 0   | 0     | 0     | 542    | 726    | 514    | 543    | 49    | 0   | 0   | 0   |
| Minimum:                              | 0   | 0   | 0     | 0     | 0      | 0      | 0      | 0      | 0     | 0   | 0   | 0   |
| Maximum:                              | 0   | 0   | 0     | 0     | 1,167  | 1,075  | 1,084  | 1,058  | 976   | 0   | 0   | 0   |
| Non compliance<br>(max flow)          | 0   | 0   | 0     | 0     | 0      | 0      | 0      | 0      | 0     | 0   | 0   | 0   |
| No. Discharge Days                    | 0   | 0   | 0     | 0     | 17     | 22     | 19     | 18     | 3     | 0   | 0   | 0   |

Maximum permitted daily flow: 1,370 cubic metres/day Flows were sent to Morningstar Golf Course for 79 days between May to September.

|                                 |          |          |          | 2023 0   | utfall Fl | ows (Cı  | ıbic Me  | tres)    |          |          |          |          |
|---------------------------------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Day                             | Jan      | Feb      | March    | April    | May       | June     | July     | Aug      | Sept     | Oct      | Nov      | Dec      |
| 1                               | 10,547.0 | 9,814.4  | 10,400.2 | 9,705.0  | 10,035.7  | 9,002.6  | 10,409.7 | 10,566.6 | 9,750.6  | 9,708.2  | 11,145.6 | 11,189.2 |
| 2                               | 10,890.2 | 9,746.6  | 11,058.7 | 9,762.5  | 9,777.6   | 9,131.6  | 10,488.8 | 10,336.9 | 9,078.0  | 10,292.0 | 11,110.8 | 10,833.6 |
| 3                               | 10,429.8 | 10,106.6 | 10,848.0 | 9,654.2  | 9,780.1   | 9,168.3  | 10,319.8 | 9,939.3  | 9,707.3  | 9,708.8  | 10,702.9 | 10,741.1 |
| 4                               | 10,392.2 | 10,189.1 | 12,690.4 | 9,608.1  | 9,249.0   | 10,281.0 | 10,477.5 | 9,771.4  | 9,933.8  | 9,569.8  | 11,230.1 | 14,462.8 |
| 5                               | 10,609.1 | 10,095.0 | 12,233.0 | 9,678.2  | 10,068.9  | 9,314.5  | 10,298.3 | 9,578.9  | 9,773.4  | 9,488.3  | 11,003.5 | 12,409.6 |
| 6                               | 10,626.4 | 10,142.0 | 12,414.0 | 10,251.9 | 9,410.0   | 9,292.7  | 10,377.6 | 10,206.4 | 9,621.0  | 9,670.4  | 11,295.8 | 11,662.2 |
| 7                               | 11,370.1 | 9,997.5  | 11,341.0 | 10,123.0 | 9,382.1   | 9,376.7  | 10,544.9 | 10,467.2 | 9,819.9  | 9,781.4  | 10,771.6 | 11,018.8 |
| 8                               | 11,581.9 | 9,669.0  | 11,032.8 | 10,451.2 | 9,191.1   | 9,360.2  | 9,452.1  | 9,616.1  | 9,800.6  | 9,816.2  | 10,410.6 | 10,670.0 |
| 9                               | 11,740.5 | 9,857.4  | 10,666.5 | 11,006.7 | 9,093.5   | 9,944.4  | 9,016.8  | 9,596.1  | 9,735.8  | 9,793.9  | 10,286.9 | 12,189.2 |
| 10                              | 11,027.9 | 9,807.2  | 10,601.8 | 10,571.1 | 9,135.1   | 10,406.8 | 10,021.5 | 9,159.9  | 10,058.8 | 9,981.0  | 11,988.1 | 11,461.1 |
| 11                              | 10,902.6 | 9,813.0  | 10,417.3 | 10,196.8 | 8,933.8   | 10,359.1 | 8,998.6  | 10,409.2 | 9,852.8  | 9,704.9  | 11,977.0 | 11,067.7 |
| 12                              | 12,914.2 | 10,009.3 | 10,489.2 | 10,003.9 | 8,829.2   | 10,199.0 | 9,276.6  | 9,207.5  | 9,554.2  | 9,441.6  | 11,540.5 | 10,969.6 |
| 13                              | 13,259.7 | 9,886.9  | 10,456.4 | 10,170.7 | 9,035.2   | 10,100.0 | 9,570.7  | 10,108.1 | 9,642.1  | 9,469.4  | 11,170.7 | 11,577.5 |
| 14                              | 12,278.2 | 9,733.2  | 10,402.2 | 9,987.3  | 8,791.1   | 9,302.1  | 10,201.7 | 9,307.0  | 9,694.1  | 9,427.1  | 10,683.4 | 12,136.5 |
| 15                              | 11,640.6 | 9,644.5  | 10,201.4 | 10,009.2 | 9,947.4   | 9,105.4  | 9,629.9  | 10,296.4 | 9,614.4  | 9,732.3  | 10,684.4 | 11,813.5 |
| 16                              | 11,344.3 | 9,731.0  | 10,013.7 | 10,086.1 | 10,058.0  | 8,790.1  | 10,295.8 | 9,423.6  | 9,555.8  | 10,875.3 | 10,607.3 | 11,354.1 |
| 17                              | 11,092.7 | 9,954.2  | 10,080.3 | 10,231.7 | 9,931.9   | 9,519.1  | 9,468.4  | 10,385.0 | 9,587.1  | 11,524.4 | 10,385.6 | 11,225.8 |
| 18                              | 11,306.3 | 10,259.8 | 10,142.3 | 10,397.3 | 9,942.0   | 10,393.2 | 9,420.8  | 10,362.8 | 9,486.3  | 14,663.0 | 10,575.8 | 11,433.2 |
| 19                              | 10,822.8 | 10,035.4 | 10,169.9 | 10,166.6 | 10,340.0  | 10,712.0 | 9,495.4  | 10,156.5 | 9,579.5  | 11,656.4 | 10,284.8 | 11,935.1 |
| 20                              | 10,586.7 | 10,259.7 | 10,394.9 | 10,199.0 | 10,315.8  | 9,324.0  | 9,210.2  | 10,372.8 | 9,575.5  | 9,951.7  | 10,168.0 | 11,614.2 |
| 21                              | 10,640.6 | 10,147.9 | 9,966.1  | 10,200.8 | 10,233.6  | 9,212.5  | 9,400.8  | 10,305.2 | 9,583.1  | 10,691.6 | 10,280.1 | 11,175.5 |
| 22                              | 10,449.9 | 9,796.5  | 9,909.0  | 10,408.6 | 10,786.8  | 9,058.0  | 10,296.8 | 9,262.2  | 9,509.0  | 10,273.0 | 9,917.7  | 11,619.5 |
| 23                              | 10,311.0 | 9,436.0  | 10,256.1 | 10,423.7 | 10,322.0  | 9,094.9  | 10,049.7 | 9,135.4  | 9,667.1  | 10,209.2 | 9,649.4  | 11,372.8 |
| 24                              | 10,144.3 | 9,906.8  | 9,855.4  | 10,497.5 | 10,322.0  | 9,043.9  | 9,261.5  | 9,054.7  | 9,785.9  | 13,959.8 | 9,677.3  | 11,371.0 |
| 25                              | 9,913.1  | 10,016.7 | 9,882.5  | 9,650.7  | 10,248.5  | 9,010.3  | 8,981.0  | 8,589.0  | 10,021.4 | 12,498.4 | 9,774.8  | 12,861.2 |
| 26                              | 9,893.6  | 10,192.6 | 9,795.8  | 9,804.4  | 9,162.3   | 9,382.8  | 9,167.7  | 9,809.1  | 9,980.6  | 11,040.4 | 9,828.0  | 12,898.8 |
| 27                              | 9,969.5  | 10,205.8 | 9,755.3  | 9,925.6  | 9,076.7   | 9,121.8  | 10,330.2 | 10,022.9 | 10,214.8 | 10,442.2 | 9,898.1  | 12,878.3 |
| 28                              | 10,068.4 | 10,137.0 | 9,584.9  | 9,896.1  | 10,086.7  | 9,214.1  | 9,296.0  | 10,188.9 | 9,678.9  | 10,336.7 | 9,824.1  | 13,093.2 |
| 29                              | 9,746.5  |          | 9,823.4  | 9,884.3  | 9,139.9   | 9,007.8  | 9,260.1  | 9,158.2  | 9,837.9  | 10,209.9 | 9,903.6  | 12,173.2 |
| 30                              | 9,738.0  |          | 9,572.7  | 9,850.5  | 9,077.5   | 10,577.8 | 10,393.9 | 9,011.7  | 9,498.2  | 10,225.8 | 10,196.2 | 11,864.1 |
| 31                              | 9,920.7  |          | 9,679.0  |          | 8,805.0   |          | 10,429.6 | 9,136.7  |          | 9,796.3  |          | 11,441.6 |
| Total:                          | 336,159  | 278,591  | 324,134  | 302,803  | 298,508   | 285,807  | 303,842  | 302,942  | 291,198  | 323,939  | 316,973  | 364,514  |
| Average:                        | 10,844   | 9,950    | 10,456   | 10,093   | 9,629     | 9,527    | 9,801    | 9,772    | 9,707    | 10,450   | 10,566   | 11,759   |
| Minimum:                        | 9,738    | 9,436    | 9,573    | 9,608    | 8,791     | 8,790    | 8,981    | 8,589    | 9,078    | 9,427    | 9,649    | 10,670   |
| Maximum:                        | 13,260   | 10,260   | 12,690   | 11,007   | 10,787    | 10,712   | 10,545   | 10,567   | 10,215   | 14,663   | 11,988   | 14,463   |
| Non<br>compliance<br>(max flow) | 0        | 0        | 0        | 0        | 0         | 0        | 0        | 0        | 0        | 0        | 0        | 0        |

Maximum permitted daily flow: 16,000 cubic metres/day

|         |     | 2023 I | nfluent | 5-day E | Biochen | nical Ox | ygen De | emand | (BOD₅) | (mg/L) |     |     |
|---------|-----|--------|---------|---------|---------|----------|---------|-------|--------|--------|-----|-----|
| Day     | Jan | Feb    | March   | April   | May     | June     | July    | Aug   | Sept   | Oct    | Nov | Dec |
| 1       |     |        |         |         |         | 407      |         |       |        | 213    |     |     |
| 2       |     | 230    | 195     | 231     | 255     |          |         |       |        |        | 236 |     |
| 3       | 227 |        |         |         |         |          |         | 276   |        |        |     |     |
| 4       |     |        |         | 264     | 179     | 244      | 214     |       |        |        |     |     |
| 5       | 192 |        | 180     |         |         |          |         |       | 204    | 230    |     |     |
| 6       |     |        |         |         |         | 320      | 253     |       |        |        |     |     |
| 7       |     |        | 212     |         | 201     |          |         |       | 210    |        | 212 |     |
| 8       | 152 |        |         |         |         | 338      |         | 285   |        |        |     |     |
| 9       |     | 212    | 219     |         | 254     |          | 225     |       |        |        | 204 |     |
| 10      | 116 |        |         |         |         |          |         | 236   | 186    | 245    |     | 171 |
| 11      |     |        |         | 236     | 296     | 329      | 211     |       |        |        |     |     |
| 12      | 127 | 205    | 203     |         |         |          |         |       | 202    | 248    | 158 | 186 |
| 13      |     |        |         | 243     |         | 324      | 230     | 247   |        |        |     |     |
| 14      |     | 247    | 200     |         | 265     |          |         |       | 156    |        |     | 182 |
| 15      | 121 |        |         |         |         | 220      |         | 279   |        | 220    |     |     |
| 16      |     | 194    | 199     | 232     | 391     |          | 218     |       |        |        | 224 |     |
| 17      | 217 |        |         |         |         |          |         | 230   | 192    | 320    |     | 174 |
| 18      |     |        |         | 268     | 240     | 250      | 372     |       |        |        |     |     |
| 19      | 175 | 244    | 196     |         |         |          |         |       | 202    | 186    | 196 |     |
| 20      |     |        |         | 250     |         | 330      | 340     | 247   |        |        |     |     |
| 21      |     | 246    | 208     |         |         |          |         |       | 234    |        | 186 | 190 |
| 22      | 181 |        |         |         |         | 320      |         | 231   |        | 198    |     |     |
| 23      |     | 208    | 234     | 218     | 278     |          | 251     |       |        |        | 194 |     |
| 24      | 221 |        |         |         |         |          |         | 236   |        | 188    |     |     |
| 25      |     |        |         | 241     | 250     | 246      | 280     |       |        |        |     |     |
| 26      | 259 | 194    | 191     |         |         |          |         |       | 228    |        | 168 |     |
| 27      |     |        |         | 255     |         | 262      | 256     |       |        |        |     |     |
| 28      |     | 217    | 234     |         | 233     |          |         | 199   |        |        | 205 | 200 |
| 29      | 255 |        |         |         |         |          |         |       |        | 194    |     |     |
| 30      |     |        | 224     | 211     | 234     |          | 287     |       |        |        | 200 |     |
| 31      | 261 |        |         |         |         |          |         | 232   |        | 316    |     |     |
| Average | 193 | 220    | 207     | 241     | 256     | 299      | 261     | 245   | 202    | 233    | 198 | 184 |

|                    | 2023 Effluent 5-day Biochemical Oxygen Demand (BOD <sub>5</sub> ) (mg/L) |      |       |       |      |      |      |      |      |      |      |  |
|--------------------|--------------------------------------------------------------------------|------|-------|-------|------|------|------|------|------|------|------|--|
| Day                | Jan                                                                      | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  |  |
| 1                  | 19.4                                                                     |      |       |       |      | 15.2 |      |      |      | 7.6  |      |  |
| 2                  |                                                                          | 19.8 | 12.8  | 13.7  | 14.7 |      |      |      |      |      | 6.0  |  |
| 3                  | 23.7                                                                     |      |       |       |      |      |      | 10.4 |      |      |      |  |
| 4                  |                                                                          |      |       | 17.8  | 8.6  | 10.8 | 11.7 |      |      |      |      |  |
| 5                  | 20.9                                                                     | 17.7 | 13.7  |       |      |      |      |      | 8.9  | 8.1  |      |  |
| 6                  |                                                                          |      |       |       |      | 14.8 | 12.1 |      |      |      |      |  |
| 7                  |                                                                          | 14.4 | 13.2  |       | 11.1 |      |      |      | 10.2 |      | 9.7  |  |
| 8                  | 17.0                                                                     |      |       |       |      | 14.1 |      | 12.6 |      |      |      |  |
| 9                  |                                                                          | 14.0 | 11.4  |       | 17.1 |      | 10.5 |      |      |      | 10.0 |  |
| 10                 | 14.5                                                                     |      |       |       |      |      |      | 9.2  | 9.8  | 9.0  |      |  |
| 11                 |                                                                          |      |       | 15.3  | 18.2 | 11.2 | 10.6 |      |      |      |      |  |
| 12                 | 17.6                                                                     | 11.1 | 13.8  |       |      |      |      |      | 10.5 | 7.8  | 7.2  |  |
| 13                 |                                                                          |      |       | 20.2  |      | 9.8  | 9.6  | 14.5 |      |      |      |  |
| 14                 |                                                                          | 14.5 | 14.8  |       | 11.2 |      |      |      | 6.9  |      |      |  |
| 15                 | 11.0                                                                     |      |       |       |      | 8.0  |      | 18.6 |      | 7.2  |      |  |
| 16                 |                                                                          | 12.1 | 18.1  | 15.1  | 12.3 |      | 8.5  |      |      |      | 8.4  |  |
| 17                 | 13.2                                                                     |      |       |       |      |      |      | 10.8 | 7.7  | 14.8 |      |  |
| 18                 |                                                                          |      |       | 16.7  | 14.1 | 9.6  | 13.5 |      |      |      |      |  |
| 19                 | 11.3                                                                     | 13.8 | 15.8  |       |      |      |      |      | 8.1  | 8.0  | 7.8  |  |
| 20                 |                                                                          |      |       | 16.3  |      | 13.1 | 9.7  | 8.7  |      |      |      |  |
| 21                 |                                                                          | 14.6 | 15.8  |       |      |      |      |      | 8.5  |      | 8.4  |  |
| 22                 | 11.1                                                                     |      |       |       |      | 11.6 |      | 8.1  |      | 8.5  |      |  |
| 23                 |                                                                          | 13.6 | 17.5  | 14.5  | 14.3 |      | 11.5 |      |      |      | 7.9  |  |
| 24                 | 14.4                                                                     |      |       |       |      |      |      | 9.1  |      | 12.1 |      |  |
| 25                 |                                                                          |      |       | 16.5  | 13.2 | 9.8  | 9.5  |      |      |      |      |  |
| 26                 | 13.1                                                                     | 14.2 | 12.6  |       |      |      |      |      | 15.5 |      | 8.6  |  |
| 27                 |                                                                          |      |       | 14.9  |      | 12.5 | 8.9  |      |      |      |      |  |
| 28                 |                                                                          | 13.3 | 14.1  |       | 10.2 |      |      | 11.0 |      |      | 9.2  |  |
| 29                 | 13.8                                                                     |      |       |       |      |      |      |      |      | 8.7  |      |  |
| 30                 |                                                                          |      | 13.6  | 12.4  | 11.6 |      | 9.3  |      |      |      | 8.2  |  |
| 31                 | 18.0                                                                     |      |       |       |      |      |      | 14.5 |      | 11.4 |      |  |
| Average            | 15.6                                                                     | 14.4 | 14.4  | 15.8  | 13.1 | 11.7 | 10.4 | 11.6 | 9.6  | 9.4  | 8.3  |  |
| Non-<br>compliance | 0                                                                        | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |

FCPCC Outfall Maximum cBOD<sub>5</sub>: 45 mg/L

| 2023 Morningstar 5-day Biochemical Oxygen Demand (BOD <sub>5</sub> ) (mg/L) |      |      |      |     |      |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|------|------|------|-----|------|--|--|--|--|--|--|--|
| Day                                                                         | Мау  | June | July | Aug | Sept |  |  |  |  |  |  |  |
| 1                                                                           |      | 14.6 |      |     | 7.3  |  |  |  |  |  |  |  |
| 2                                                                           |      | 11.5 |      |     |      |  |  |  |  |  |  |  |
| 3                                                                           | 12.8 |      |      | 6.9 |      |  |  |  |  |  |  |  |
| 4                                                                           | 12.7 |      |      | 6.9 |      |  |  |  |  |  |  |  |
| 5                                                                           |      |      |      |     |      |  |  |  |  |  |  |  |
| 6                                                                           |      |      |      |     |      |  |  |  |  |  |  |  |
| 7                                                                           |      |      |      |     |      |  |  |  |  |  |  |  |
| 8                                                                           |      | 8.1  |      |     |      |  |  |  |  |  |  |  |
| 9                                                                           |      | 9.1  |      |     |      |  |  |  |  |  |  |  |
| 10                                                                          |      |      |      | 6.0 |      |  |  |  |  |  |  |  |
| 11                                                                          | 14.7 |      |      |     |      |  |  |  |  |  |  |  |
| 12                                                                          | 12.6 |      |      |     |      |  |  |  |  |  |  |  |
| 13                                                                          |      |      | 6.8  |     |      |  |  |  |  |  |  |  |
| 14                                                                          |      | 7.3  |      |     |      |  |  |  |  |  |  |  |
| 15                                                                          |      | 7.4  |      |     |      |  |  |  |  |  |  |  |
| 16                                                                          |      |      |      |     |      |  |  |  |  |  |  |  |
| 17                                                                          |      |      |      |     |      |  |  |  |  |  |  |  |
| 18                                                                          |      |      |      |     |      |  |  |  |  |  |  |  |
| 19                                                                          |      |      |      |     |      |  |  |  |  |  |  |  |
| 20                                                                          |      |      | 7.0  |     |      |  |  |  |  |  |  |  |
| 21                                                                          |      |      | 8.3  |     |      |  |  |  |  |  |  |  |
| 22                                                                          |      | 10.2 |      |     |      |  |  |  |  |  |  |  |
| 23                                                                          |      | 9.0  |      |     |      |  |  |  |  |  |  |  |
| 24                                                                          |      |      |      | 5.3 |      |  |  |  |  |  |  |  |
| 25                                                                          |      |      |      | 6.1 |      |  |  |  |  |  |  |  |
| 26                                                                          | 11.2 |      |      |     |      |  |  |  |  |  |  |  |
| 27                                                                          |      |      |      |     |      |  |  |  |  |  |  |  |
| 28                                                                          |      |      | 6.4  |     |      |  |  |  |  |  |  |  |
| 29                                                                          |      | 8.4  |      |     |      |  |  |  |  |  |  |  |
| 30                                                                          |      |      |      |     |      |  |  |  |  |  |  |  |
| 31                                                                          |      |      |      | 4.6 |      |  |  |  |  |  |  |  |
| Count                                                                       | 5    | 9    | 4    | 6   | 1    |  |  |  |  |  |  |  |
| Average:                                                                    | 12.8 | 9.5  | 7.1  | 6.0 | 7.3  |  |  |  |  |  |  |  |
| Non-compliances                                                             | 0    | 0    | 0    | 0   | 0    |  |  |  |  |  |  |  |
| Minimum:                                                                    | 11.2 | 7.3  | 6.4  | 4.6 | 7.3  |  |  |  |  |  |  |  |

FCPCC Morningstar Discharge Maximum cBOD<sub>5</sub>: 20 mg/L

|          |     |     | 2023 li | nfluent | Total S | uspend | ed Solid | ls (TSS) | (mg/L) |     |     |     |
|----------|-----|-----|---------|---------|---------|--------|----------|----------|--------|-----|-----|-----|
| Day      | Jan | Feb | March   | April   | May     | June   | July     | Aug      | Sept   | Oct | Nov | Dec |
| 1        | 254 | 381 | 377     | 289     | 545     | 647    | 386      | 503      | 485    | 448 | 469 | 307 |
| 2        | 296 | 379 | 391     | 316     | 382     | 496    | 295      | 367      | 322    | 708 | 345 | 271 |
| 3        | 260 | 348 | 393     | 338     | 550     | 325    | 274      | 298      | 297    | 605 | 303 | 308 |
| 4        | 392 | 111 | 256     | 393     | 414     | 403    | 374      | 483      | 398    | 657 | 427 | 220 |
| 5        | 325 | NR  | 265     | 613     | 325     | 477    | 457      | 292      | 380    | 253 | 291 | 215 |
| 6        | 274 | NR  | 353     | 374     | 281     | 405    | 391      | 335      | 553    | 454 | 308 | 315 |
| 7        | 258 | NR  | 311     | 409     | 317     | 479    | 570      | 376      | 424    | 422 | 545 |     |
| 8        | 245 | 553 | 548     | 212     | 397     | 461    | 368      | 358      | 442    | 424 | 450 | 302 |
| 9        | 287 | 352 | 347     | 285     | 492     | 504    | 433      | 381      | 358    | 519 | 366 | 259 |
| 10       | 213 | 549 | 334     | 320     | 478     | 384    | 286      | 373      | 302    | 500 | 376 | 219 |
| 11       | 382 | 373 | 325     | 550     | 401     | 381    | 468      | 561      | 366    | 651 | 284 | 296 |
| 12       | 282 | 299 | 325     | 566     | 517     | 481    | 432      | 608      | 365    | 423 | 253 | 291 |
| 13       | 265 | 506 | 343     | 345     | 382     | 350    | 656      | 305      | 395    | 409 | 300 | 114 |
| 14       | 220 | 426 | 346     | 473     | 326     | 462    | 318      | 467      | 164    | 404 | 296 | 285 |
| 15       | 219 | 415 | 517     | 295     | 460     | 561    | 304      | 382      | 336    | 329 | 273 | 273 |
| 16       | 242 | 370 | 331     | 366     | 620     | 532    | 351      | 532      | 361    | 421 | 325 | 274 |
| 17       | 352 | 402 | 398     | 423     | 538     | 331    | 419      | 405      | 307    | 457 | 681 | 246 |
| 18       | 344 | 402 | 396     | 437     | 498     | 371    | 492      | 473      | 419    | 359 | 382 | 527 |
| 19       | 329 | 290 | 328     | 429     | 360     | 651    | 520      | 303      | 409    | 311 | 266 | 317 |
| 20       | 280 | 328 | 514     | 389     | 334     | 359    | 504      | 361      | 551    | 350 | 360 | 360 |
| 21       | 281 | 523 | 305     | 363     | 346     | 460    | 730      | 385      | 527    | 550 | 431 | 301 |
| 22       | 338 | 334 | 415     | 296     | 588     | 469    | 430      | 338      | 373    | 312 | 401 | 327 |
| 23       | 414 | 312 | 370     | 296     | 527     | 389    | 392      | 470      | 384    | 304 | 494 | 281 |
| 24       | 393 | 332 | 426     | 549     | 605     | 477    | 575      | 416      | 380    | 330 | 341 | 257 |
| 25       | 401 | 305 | 377     | 354     | 487     | 355    | 373      | 390      | 434    | 296 | 393 | 253 |
| 26       | 657 | 280 | 330     | 363     | 462     | 328    | 358      | 388      | 431    | 545 | 297 | 251 |
| 27       | 365 | 400 | 472     | 453     | 356     | 482    | 324      | 372      | 427    | 302 | 432 | 289 |
| 28       | 321 | 349 | 489     | 526     | 315     | 537    | 464      | 419      | 383    | 385 | 313 | 389 |
| 29       | 334 |     | 559     | 255     | 550     | 318    | 356      | 507      | 410    | 286 | 429 | 295 |
| 30       | 516 |     | 409     | 393     | 401     | 542    | 322      | 488      | 327    | 381 | 400 | 270 |
| 31       | 493 |     | 371     |         | 516     |        | 322      | 500      |        | 453 |     | 229 |
| Average: | 330 | 373 | 385     | 389     | 444     | 447    | 418      | 414      | 390    | 427 | 374 | 285 |

| 2023 Effluent Total Suspended Solids (TSS) (mg/L) |      |      |       |       |      |      |      |      |      |      |      |      |
|---------------------------------------------------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| Day                                               | Jan  | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
| 1                                                 | 24.8 | 14.4 | 13.8  | 15.4  | 18.0 | 16.4 | 13.0 | 11.6 | 12.4 | 15.4 | 20.6 | 21.4 |
| 2                                                 | 28.0 | 12.8 | 16.2  | 14.6  | 19.8 | 13.8 | 14.4 | 11.4 | 11.2 | 15   | 11.2 | 22.0 |
| 3                                                 | 23.6 | 19.8 | 17.6  | 16.4  | 13.0 | 14.0 | 17.4 | 11.8 | 14.8 | 12   | 15.8 | 19.4 |
| 4                                                 | 24.6 | 14.5 | 17.6  | 18.0  | 11.2 | 11.8 | 17.0 | 11.2 | 12.0 | 14.6 | 14.4 | 21.4 |
| 5                                                 | 21.4 | 15.4 | 14.6  | 16.4  | 18.0 | 15.6 | 11.0 | 10.6 | 11.6 | 13   | 18.6 | 17.8 |
| 6                                                 | 29.0 | 16.6 | 16.4  | 10.6  | 14.5 | 13.2 | 15.8 | 11.2 | 15.0 | 15.4 | 25.4 | 11.2 |
| 7                                                 | 29.6 | 13.8 | 15.4  | 14.8  | 12.2 | 13.0 | 13.0 | 11.2 | 15.8 | 17.0 | 15.6 | 13.0 |
| 8                                                 | 14.4 | 17.0 | 15.8  | 12.4  | 17.2 | 11.8 | 12.6 | 15.2 | 20.0 | 14.4 | 17.2 | 16.8 |
| 9                                                 | 25.4 | 19.8 | 15.6  | 14.0  | 17.8 | 14.8 | 12.6 | 13.4 | 20.8 | 17.2 | 17.0 | 19.4 |
| 10                                                | 15.0 | 18.0 | 18.4  | 19.8  | 14.2 | 12.2 | 15.0 | 10.8 | 17.6 | 20.0 | 19.4 | 16.2 |
| 11                                                | 20.4 | 12.6 | 19.2  | 16.8  | 18.0 | 12.2 | 13.4 | 12.0 | 16.8 | 15.0 | 22.8 | 20.6 |
| 12                                                | 24.4 | 11.2 | 15.0  | 15.0  | 17.2 | 15.4 | 15.0 | 7.0  | 20.2 | 15.8 | 16.0 | 21.0 |
| 13                                                | 17.0 | 9.4  | 13.0  | 14.2  | 18.8 | 14.2 | 13.2 | 9.4  | 15.6 | 16.4 | 16.6 | 11.6 |
| 14                                                | 19.6 | 14.4 | 12.2  | 16.4  | 14.4 | 15.4 | 12.6 | 9.8  | 15.8 | 16.8 | 22.8 | 18.0 |
| 15                                                | 12.0 | 14.2 | 16.6  | 14.0  | 20.4 | 11.8 | 10.4 | 20.6 | 15.6 | 17   | 15.6 | 19.2 |
| 16                                                | 17.2 | 13.4 | 14.2  | 12.2  | 17.7 | 14.8 | 11.6 | 13.4 | 17.4 | 19   | 17.0 | 14.4 |
| 17                                                | 16.0 | 11.8 | 15.6  | 16.6  | 15.6 | 12.6 | 13.2 | 12.6 | 15.6 | 26   | 14.6 | 16.6 |
| 18                                                | 18.8 | 13.0 | 16.4  | 22.2  | 19.0 | 11.8 | 14.2 | 14.0 | 16.0 | 15.2 | 14.8 | 13.6 |
| 19                                                | 14.0 | 13.2 | 13.8  | 15.6  | 18.8 | 17.0 | 10.4 | 12.4 | 18.6 | 14.6 | 18.2 | 18.4 |
| 20                                                | 16.0 | 12.6 | 18.0  | 17.0  | 17.0 | 16.4 | 10.2 | 12.0 | 18.6 | 13.6 | 18.4 | 13.2 |
| 21                                                | 17.8 | 15.4 | 16.0  | 14.0  | 15.0 | 13.0 | 23.0 | 15.6 | 16.4 | 16.8 | 23.2 | 15.2 |
| 22                                                | 15.2 | 17.2 | 15.4  | 16.4  | 17.6 | 15.0 | 8.8  | 11.6 | 16.8 | 15.4 | 26.0 | 17.0 |
| 23                                                | 16.0 | 13.8 | 15.6  | 12.8  | 17.0 | 13.6 | 8.8  | 13.8 | 16.2 | 17.6 | 21.2 | 23.6 |
| 24                                                | 16.2 | 11.2 | 16.0  | 26.8  | 13.6 | 15.2 | 11.6 | 13.4 | 19.8 | 19.6 | 20.4 | 20.6 |
| 25                                                | 14.0 | 12.4 | 16.6  | 18.2  | 16.6 | 12.6 | 11.8 | 14.4 | 11.8 | 13.8 | 24.8 | 23.6 |
| 26                                                | 16.6 | 14.6 | 12.8  | 12.6  | 14.6 | 13.4 | 10.0 | 16.4 | 13.6 | 17.4 | 19.4 | 20.0 |
| 27                                                | 15.6 | 13.8 | 16.4  | 13.0  | 16.4 | 14.2 | 10.6 | 16.4 | 11.0 | 15.6 | 24.6 | 19.6 |
| 28                                                | 12.8 | 12.0 | 13.4  | 15.8  | 13.1 | 13.8 | 9.8  | 20.4 | 11.0 | 15.4 | 21.8 | 20.8 |
| 29                                                | 14.0 |      | 15.2  | 13.0  | 17.8 | 16.4 | 10.4 | 18.8 | 15   | 15.8 | 24.0 | 17.2 |
| 30                                                | 14.2 |      | 12.8  | 11.2  | 16.2 | 12.0 | 9.6  | 14.2 | 10.2 | 20.6 | 21.2 | 18.8 |
| 31                                                | 15.8 |      | 15.0  |       | 15.4 |      | 13.8 | 11.0 | -    | 15.3 |      | 28.4 |
| Average:                                          | 18.7 | 14.2 | 15.5  | 15.5  | 16.3 | 13.9 | 12.7 | 13.1 | 15.4 | 16.4 | 19.3 | 18.4 |
| Non-<br>compliances<br>(Morningstar)              | 0    | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Non-<br>Compliance<br>(Outfall)                   | 0    | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Total Non-<br>Compliances                         | 0    | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

FCPCC Outfall Maximum TSS: 60 mg/L

Days highlighted in yellow were days in which TSS exceed levels in the outfall permit.
| 2023 Morningstar Total Suspended Solids (TSS) (mg/L) |      |      |      |      |           |  |  |  |  |  |
|------------------------------------------------------|------|------|------|------|-----------|--|--|--|--|--|
| Day                                                  | May  | June | July | Aug  | September |  |  |  |  |  |
| 1                                                    |      | 16.0 |      |      | 6.8       |  |  |  |  |  |
| 2                                                    |      | 10.4 |      |      | 7.6       |  |  |  |  |  |
| 3                                                    | 18.4 | 19.6 | 19.2 | 5.6  |           |  |  |  |  |  |
| 4                                                    | 11.6 |      | 12.4 | 9.6  |           |  |  |  |  |  |
| 5                                                    | 12.4 | 9.6  |      | 6.8  |           |  |  |  |  |  |
| 6                                                    | 14.4 | 12.0 |      |      | 7.2       |  |  |  |  |  |
| 7                                                    | 11.6 | 18.0 |      |      |           |  |  |  |  |  |
| 8                                                    | 14.8 | 10.0 | 10.0 | 7.2  |           |  |  |  |  |  |
| 9                                                    | 12.8 | 11.6 |      | 8.8  |           |  |  |  |  |  |
| 10                                                   | 13.2 |      | 11.2 | 10.8 |           |  |  |  |  |  |
| 11                                                   | 18.8 |      | 6.8  |      |           |  |  |  |  |  |
| 12                                                   | 12.8 |      | 9.6  | 8.4  |           |  |  |  |  |  |
| 13                                                   | 7.2  |      | 8.8  |      |           |  |  |  |  |  |
| 14                                                   | 10.4 | 10.4 |      | 6.0  |           |  |  |  |  |  |
| 15                                                   |      | 11.6 | 6.8  |      |           |  |  |  |  |  |
| 16                                                   |      | 13.6 |      | 10.0 |           |  |  |  |  |  |
| 17                                                   |      | 15.2 | 10.8 |      |           |  |  |  |  |  |
| 18                                                   |      |      | 8.8  |      |           |  |  |  |  |  |
| 19                                                   |      |      | 6.4  |      |           |  |  |  |  |  |
| 20                                                   |      | 10.8 | 8.8  |      |           |  |  |  |  |  |
| 21                                                   |      | 9.6  | 5.6  | 9.2  |           |  |  |  |  |  |
| 22                                                   |      | 10.4 |      | 8.4  |           |  |  |  |  |  |
| 23                                                   |      | 10.8 |      | 6.4  |           |  |  |  |  |  |
| 24                                                   |      | 10.8 | 8.0  | 8.0  |           |  |  |  |  |  |
| 25                                                   |      |      | 9.2  | 8.4  |           |  |  |  |  |  |
| 26                                                   | 10.4 | 12.0 | 10.4 | 8.8  |           |  |  |  |  |  |
| 27                                                   | 12.0 | 9.2  |      |      |           |  |  |  |  |  |
| 28                                                   |      | 10.8 | 7.6  |      |           |  |  |  |  |  |
| 29                                                   | 7.6  | 8.8  | 6.0  | 9.6  |           |  |  |  |  |  |
| 30                                                   | 12.4 |      |      | 9.2  |           |  |  |  |  |  |
| 31                                                   | 8.0  |      |      | 6.4  |           |  |  |  |  |  |
| Count                                                | 17   | 21   | 18   | 18   | 3         |  |  |  |  |  |
| Average:                                             | 12.3 | 12.0 | 9.2  | 8.2  | 7.2       |  |  |  |  |  |
| Non-compliances                                      | 0    | 0    | 0    | 0    | 0         |  |  |  |  |  |
| Minimum:                                             | 7.2  | 8.8  | 5.6  | 5.6  | 6.8       |  |  |  |  |  |
| Maximum:                                             | 18.8 | 19.6 | 19.2 | 10.8 | 7.6       |  |  |  |  |  |

FCPCC Morningstar Discharge Maximum TSS: 30 mg/L

|          | 2023 Influent Ammonia (NH₃) (mg/L) |      |       |       |      |      |      |      |      |      |      |      |
|----------|------------------------------------|------|-------|-------|------|------|------|------|------|------|------|------|
| Day      | Jan                                | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
| Sample 1 | 26.3                               | 36.0 | 30.5  | 37.5  | 34.2 | 40.8 | 44.9 | 42.7 | 43.3 | 47.0 | 32.6 | 31.8 |
| Sample 2 | 20.8                               | 35.0 | 31.6  | 34.3  | NR   | 38.4 | 41.3 | 42.5 | 41.3 | 43.1 | 32.8 | 30.9 |
| Sample 3 | 22.5                               | 32.4 | 37.4  | 36.0  | 42.8 | 41.6 | 41.0 | 43.9 | 41.9 | 43.3 | 33.4 | 32.0 |
| Sample 4 | 37.7                               |      | 41.1  |       | 36.0 | 41.5 | 43.4 |      | 36.2 | 31.0 |      |      |
| Sample 5 |                                    |      | 37.1  |       |      | 39.5 | 44.2 |      |      | 44.3 |      |      |
| Average  | 26.8                               | 34.5 | 35.5  | 35.9  | 37.7 | 40.4 | 43.0 | 43.0 | 40.7 | 41.7 | 32.9 | 31.6 |

| 2023 Effluent Ammonia (NH₃) (mg/L) |       |       |       |       |       |       |       |                |       |       |       |       |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|-------|
| Day                                | Jan   | Feb   | March | April | May   | June  | July  | August         | Sept  | Oct   | Nov   | Dec   |
| Sample 1                           | 31.8  | 31.9  | 26.5  | 30.5  | 29.6  | 31.4  | 40.0  | 37.7           | 37.2  | 30.1  | 26.5  | 21.0  |
| Sample 2                           | 27.3  | 29.7  | 26.3  | 23.1  | NR    | 27.6  | 34.1  | 37.6           | 39.2  | 32.8  | 27.3  | 23.8  |
| Sample 3                           | 26.4  | 26.8  | 33.6  | 26.4  | 26.7  | 37.9  | 31.8  | 39.3           | 31.0  | 30.8  | 22.6  | 24.7  |
| Sample 4                           | 31.7  |       | 38.8  |       | 31.1  | 37.8  | 40.1  |                | 29.7  | 19.7  |       | 26.9  |
| Sample 5                           |       |       | 30.6  |       |       | 34.0  | 35.1  |                |       | 29.1  |       |       |
| Average                            | 29.3  | 29.5  | 31.2  | 26.7  | 29.1  | 33.7  | 36.2  | 38.2           | 34.3  | 28.5  | 25.5  | 24.1  |
| % Reduction                        | -9.2% | 14.5% | 12.3% | 25.8% | 22.7% | 16.4% | 15.7% | 11 <b>.2</b> % | 15.7% | 31.7% | 22.7% | 23.7% |

Regular Ammonia testing is not required for permit, regular testing is completed internally and has historically been reported in this section of the Annual Report.

| Day       1       2       3       4 | Jan   12.6   13.2   13.3   13.4   13.1   13.5   12.8   13.0  | Feb       13.6       13.7       13.0       12.5       12.8       14.7       13.4 | March<br>12.6<br>12.5<br>12.8<br>12.9<br>10.8<br>12.5 | April<br>12.5<br>12.4<br>13.6<br>14.1<br>14.4 | May<br>14.7<br>14.6<br>15.3<br>15.2 | June<br>18.8<br>18.2<br>17.9<br>18.3 | July<br>19.6<br>19.5<br>19.7 | Aug<br>20.5<br>20.4<br>21.2 | Sept<br>20.9<br>20.4 | Oct<br>17.5<br>17.6 | Nov<br>15.2<br>16.4 | Dec<br>15.2<br>13.4 |
|-------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------|------------------------------|-----------------------------|----------------------|---------------------|---------------------|---------------------|
| 1<br>2<br>3<br>4                    | 12.6<br>13.2<br>13.3<br>13.4<br>13.1<br>13.5<br>12.8<br>13.0 | 13.6<br>13.7<br>13.0<br>12.5<br>12.8<br>14.7<br>13.4                             | 12.6<br>12.5<br>12.8<br>12.9<br>10.8<br>12.5          | 12.5<br>12.4<br>13.6<br>14.1<br>14.4          | 14.7<br>14.6<br>15.3<br>15.2        | 18.8<br>18.2<br>17.9<br>18.3         | 19.6<br>19.5<br>19.7         | 20.5<br>20.4<br>21.2        | 20.9<br>20.4         | 17.5<br>17.6        | 15.2<br>16.4        | 15.2<br>13.4        |
| 2<br>3<br>4                         | 13.2<br>13.3<br>13.4<br>13.1<br>13.5<br>12.8<br>13.0         | 13.7<br>13.0<br>12.5<br>12.8<br>14.7<br>13.4                                     | 12.5<br>12.8<br>12.9<br>10.8<br>12.5                  | 12.4<br>13.6<br>14.1<br>14.4                  | 14.6<br>15.3<br>15.2                | 18.2<br>17.9<br>18.3                 | 19.5<br>19.7                 | 20.4<br>21.2                | 20.4                 | 17.6                | 16.4                | 13.4                |
| 3<br>4                              | 13.3<br>13.4<br>13.1<br>13.5<br>12.8<br>13.0                 | 13.0<br>12.5<br>12.8<br>14.7<br>13.4                                             | 12.8<br>12.9<br>10.8<br>12.5                          | 13.6<br>14.1<br>14.4                          | 15.3<br>15.2                        | 17.9<br>18.3                         | 19.7                         | 21.2                        | 10.0                 |                     |                     |                     |
| 4                                   | 13.4<br>13.1<br>13.5<br>12.8<br>13.0                         | 12.5<br>12.8<br>14.7<br>13.4                                                     | 12.9<br>10.8<br>12.5                                  | 14.1<br>14.4                                  | 15.2                                | 18.3                                 |                              |                             | 19.9                 | 18.8                | 16.8                | 13.5                |
|                                     | 13.1<br>13.5<br>12.8<br>13.0                                 | 12.8<br>14.7<br>13.4                                                             | 10.8<br>12.5                                          | 14.4                                          | 14.0                                |                                      | 19.9                         | 19.9                        | 19.3                 | 18.6                | 16.2                | 14.7                |
| 5                                   | 13.5<br>12.8<br>13.0                                         | 14.7<br>13.4                                                                     | 12.5                                                  |                                               | 14.9                                | 18.3                                 | 2.0                          | 21.3                        | 21.0                 | 18.9                | 18.2                | 14.6                |
| 6                                   | 12.8<br>13.0                                                 | 13.4                                                                             |                                                       | 13.4                                          | 15.3                                | 17.8                                 | 21.6                         | 20.7                        | 20.1                 | 19.2                | 16.4                | 14.6                |
| 7                                   | 13.0                                                         |                                                                                  | 12.4                                                  | 13.3                                          | 14.6                                | 18.9                                 | 19.8                         | 20.0                        | 20.9                 | 19.6                | 17.2                | 16.6                |
| 8                                   |                                                              | 13.6                                                                             | 13.8                                                  | 13.2                                          | 15.2                                | 18.7                                 | 19.6                         | 20.3                        | 20.4                 | 18.8                | 16.1                | 14.6                |
| 9                                   | 13.5                                                         | 13.2                                                                             | 12.8                                                  | 12.6                                          | 15.0                                | 19.2                                 | 20.1                         | 20.2                        | 20.6                 | 19.5                | 16.2                | 16.0                |
| 10                                  | 13.2                                                         | 13.4                                                                             | 12.1                                                  | 12.7                                          | 15.2                                | 18.6                                 | 19.9                         | 20.2                        | 20.1                 | 18.7                | 17.1                | 15.5                |
| 11                                  | 13.3                                                         | 13.6                                                                             | 12.1                                                  | 14.1                                          | 16.0                                | 18.2                                 | 20.1                         | 20.1                        | 20.2                 | 18.9                | 15.1                | 15.3                |
| 12                                  | 13.4                                                         | 13.2                                                                             | 11.7                                                  | 13.5                                          | 16.5                                | 18.6                                 | 20.4                         | 20.8                        | 18.8                 | 18.7                | 15.3                | 14.8                |
| 13                                  | 13.6                                                         | 13.1                                                                             | 13.4                                                  | 13.5                                          | 15.6                                | 18.5                                 | 20.6                         | 21.6                        | 20.6                 | 18.5                | 16.6                | 15.4                |
| 14                                  | 13.2                                                         | 13.0                                                                             | 12.5                                                  | 13.2                                          | 15.6                                | 18.7                                 | 20.8                         | 20.4                        | 19.0                 | 19.1                | 15.5                | 14.5                |
| 15                                  | 13.3                                                         | 13.1                                                                             | 12.2                                                  | 14.8                                          | 17.1                                | 18.9                                 | 20.3                         | 20.6                        | 20.8                 | 19.0                | 17.2                | 14.3                |
| 16                                  | 14.0                                                         | 13.3                                                                             | 13.6                                                  | 14.4                                          | 16.7                                | 19.1                                 | 20.8                         | 19.8                        | 18.7                 | 17.7                | 14.1                | 14.8                |
| 17                                  | 13.6                                                         | 13.8                                                                             | 12.7                                                  | 13.7                                          | 17.1                                | 17.8                                 | 20.7                         | 20.3                        | 19.6                 | 19.4                | 15.3                | 13.5                |
| 18                                  | 13.5                                                         | 12.2                                                                             | 12.9                                                  | 14.4                                          | 16.8                                | 18.4                                 | 20.3                         | 20.2                        | 19.7                 | 18.3                | 15.0                | 15.2                |
| 19                                  | 13.1                                                         | 12.2                                                                             | 11.3                                                  | 14.7                                          | 18.7                                | 19.6                                 | 20.4                         | 21.2                        | 19.8                 | 18.2                | 16.0                | 14.6                |
| 20                                  | 13.3                                                         | 12.7                                                                             | 13.1                                                  | 13.7                                          | 17.9                                | 18.4                                 | 20.4                         | 20.7                        | 20.3                 | 18.1                | 15.3                | 15.3                |
| 21                                  | 13.9                                                         | 12.7                                                                             | 13.4                                                  | 13.3                                          | 17.4                                | 18.3                                 | 20.6                         | 20.4                        | 19.9                 | 18.3                | 16.6                | 14.3                |
| 22                                  | 13.3                                                         | 12.9                                                                             | 13.5                                                  | 12.9                                          | 17.4                                | 19.1                                 | 21.0                         | 19.4                        | 19.6                 | 18.5                | 15.6                | 14.1                |
| 23                                  | 14.4                                                         | 10.8                                                                             | 13.0                                                  | 12.9                                          | 17.2                                | 18.8                                 | 21.0                         | 19.9                        | 19.5                 | 17.1                | 15.7                | 14.7                |
| 24                                  | 13.5                                                         | 12.9                                                                             | 12.7                                                  | 14.4                                          | 17.6                                | 18.7                                 | 20.8                         | 20.0                        | 19.3                 | 18.4                | 15.9                | 14.5                |
| 25                                  | 13.5                                                         | 13.4                                                                             | 14.8                                                  | 14.7                                          | 17.7                                | 19.9                                 | 20.9                         | 19.8                        | 20.0                 | 16.1                | 15.0                | 14.8                |
| 26                                  | 13.2                                                         | 12.1                                                                             | 13.7                                                  | 15.1                                          | 17.9                                | 19.5                                 | 20.3                         | 20.6                        | 18.5                 | 18.0                | 16.0                | 13.7                |
| 27                                  | 13.8                                                         | 12.9                                                                             | 13.0                                                  | 13.9                                          | 17.0                                | 19.0                                 | 20.4                         | 20.1                        | 18.6                 | 16.8                | 14.8                | 14.2                |
| 28                                  | 13.4                                                         | 12.5                                                                             | 13.1                                                  | 14.3                                          | 17.1                                | 19.3                                 | 20.4                         | 20.4                        | 18.5                 | 15.8                | 15.2                | 14.0                |
| 29                                  | 11.6                                                         |                                                                                  | 14.2                                                  | 14.2                                          | 18.2                                | 19.3                                 | 20.3                         | 20.4                        | 18.5                 | 15.0                | 14.8                | 13.7                |
| 30                                  | 13.0                                                         |                                                                                  | 13.6                                                  | 13.8                                          | 17.8                                | 19.4                                 | 20.4                         | 19.9                        | 17.6                 | 17.2                | 16.7                | 13.5                |
| 31                                  | 13.9                                                         | 42.2                                                                             | 13.3                                                  | 40 -                                          | 17.9                                | 46 -                                 | 20.6                         | 19.8                        | 40 -                 | 17.2                | 45.0                | 13.1                |
| Average:                            | 13.3                                                         | 13.0                                                                             | 12.9                                                  | 13.7                                          | 16.5                                | 18.7                                 | 19.8                         | 20.4                        | 19.7                 | 18.1                | 15.9                | 14.5                |
| Maximum:                            | 11.6                                                         | 10.8                                                                             | 10.8                                                  | 12.4                                          | 14.6                                | 17.8                                 | 2.0                          | 19.4                        | 17.6                 | 15.0                | 14.1                | 13.1                |

| 2023 Effluent Temperature |      |      |       |       |      |      |      |      |      |      |      |      |
|---------------------------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| Day                       | Jan  | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
| 1                         | 13.7 | 12.9 | 12.5  | 14.1  | 15.7 | 18.7 | 20.9 | 21.1 | 20.6 | 18.5 | 15.8 | 15.6 |
| 2                         | 13.4 | 13.4 | 12.9  | 13.9  | 15.6 | 18.8 | 20.7 | 21.4 | 20.9 | 18.3 | 17.2 | 15.0 |
| 3                         | 13.4 | 13.3 | 12.8  | 13.9  | 16.2 | 18.7 | 20.8 | 21.2 | 21.0 | 18.7 | 16.9 | 15.1 |
| 4                         | 13.9 | 13.7 | 13.1  | 13.7  | 16.5 | 18.7 | 19.9 | 20.7 | 20.2 | 18.5 | 17.5 | 15.1 |
| 5                         | 13.8 | 14.3 | 12.5  | NT    | 16.3 | 18.5 | 20.8 | 22.1 | 20.2 | 19.3 | 17.9 | 15.2 |
| 6                         | 13.9 | 14.2 | 12.9  | 13.8  | 15.8 | 18.8 | 20.8 | 22.0 | 19.2 | 18.8 | 16.9 | 15.0 |
| 7                         | 14.1 | 14.0 | 12.4  | 15.3  | 16.0 | 19.2 | 20.9 | 21.2 | 20.7 | 19.3 | 17.1 | 16.4 |
| 8                         | 14.1 | 13.3 | 12.9  | 14.8  | 15.6 | 18.2 | 20.5 | 19.5 | 19.7 | 19.1 | 16.4 | 14.0 |
| 9                         | 14.1 | 13.3 | 13.4  | 14.4  | 16.1 | 19.6 | 21.2 | 20.9 | 20.4 | 19.5 | 16.5 | 14.7 |
| 10                        | 13.2 | 13.6 | 13.3  | 14.2  | 16.3 | 19.7 | 20.5 | 21.0 | 20.7 | 19.4 | 16.9 | 14.8 |
| 11                        | 14.0 | 14.0 | 13.1  | 13.8  | 16.5 | 19.5 | 20.8 | 20.6 | 20.7 | 19.2 | 16.7 | 15.4 |
| 12                        | NT   | 14.0 | 13.2  | 13.8  | 16.9 | 19.6 | 20.7 | 21.8 | 19.6 | 18.6 | 16.4 | 16.3 |
| 13                        | 14.1 | 13.7 | 13.1  | 14.1  | 17.3 | 19.8 | 20.7 | 22.1 | 20.6 | 18.2 | 16.2 | 14.9 |
| 14                        | 14.1 | 13.6 | 12.8  | 13.5  | 18.0 | 18.4 | 20.9 | 21.5 | 20.2 | 18.3 | 15.7 | 14.9 |
| 15                        | 14.1 | 13.0 | 13.3  | 14.6  | 18.0 | 18.7 | 21.3 | 21.7 | 19.9 | 19.2 | 15.7 | 14.9 |
| 16                        | 13.9 | 13.3 | 13.3  | 14.4  | 18.6 | 18.2 | 21.4 | 20.8 | 19.7 | 19.2 | 15.6 | 15.2 |
| 17                        | 14.1 | 13.6 | 13.1  | 14.3  | 18.3 | 19.0 | 21.4 | 20.9 | 20.3 | 18.6 | 15.2 | 15.3 |
| 18                        | 14.6 | 13.9 | 13.5  | 14.3  | 18.4 | 19.5 | 20.5 | 21.1 | 20.2 | 18.1 | 15.5 | 14.9 |
| 19                        | 13.4 | 13.8 | 13.6  | 14.1  | 18.3 | 19.0 | 21.1 | 21.7 | 19.9 | 18.5 | 16.4 | 15.3 |
| 20                        | 14.1 | 13.9 | 14.0  | 12.9  | 18.6 | 18.7 | 21.3 | 21.6 | 19.5 | 18.9 | 15.4 | 15.1 |
| 21                        | 14.0 | 13.9 | 14.1  | 13.9  | 18.9 | 18.9 | 21.2 | 21.1 | 19.3 | 18.2 | 15.6 | 15.2 |
| 22                        | 13.7 | 13.0 | 14.2  | 13.4  | 18.8 | 19.5 | 21.8 | 20.6 | 18.8 | 18.2 | 15.6 | 15.3 |
| 23                        | 13.7 | 13.0 | 14.1  | 14.3  | 18.2 | 19.2 | 21.9 | 20.8 | 20.2 | 18.0 | 15.3 | 15.8 |
| 24                        | 13.7 | 12.3 | 15.2  | 14.1  | 18.5 | 19.8 | 20.9 | 19.8 | 19.7 | 17.4 | 14.3 | 14.7 |
| 25                        | 13.9 | 12.2 | 13.8  | 14.3  | 18.3 | 19.9 | 20.9 | 19.6 | 19.5 | 16.1 | 15.2 | 14.6 |
| 26                        | 13.8 | 13.0 | 13.8  | 14.8  | 18.6 | 20.5 | 21.3 | 21.3 | 19.6 | 16.4 | 15.6 | 14.0 |
| 27                        | 14.2 | 12.6 | 13.6  | 14.8  | 19.0 | 20.4 | 21.4 | 21.3 | 18.8 | 15.9 | 15.3 | 15.0 |
| 28                        | 14.5 | 12.7 | 13.4  | 14.8  | 18.9 | 20.5 | 21.3 | 20.4 | 18.9 | 15.7 | 15.2 | 14.9 |
| 29                        | 13.3 |      | 13.6  | 15.3  | 19.2 | 20.2 | 21.8 | 21.7 | 18.3 | 15.9 | 15.4 | 15.9 |
| 30                        | 12.7 |      | 13.3  | 15.7  | 18.6 | 20.5 | 21.5 | 20.6 | 18.7 | 15.7 | 15.3 | 15.6 |
| 31                        | 13.3 |      | 13.8  |       | 18.3 |      | 21.0 | 20.7 |      | 15.9 |      | 15.1 |
| Average:                  | 13.8 | 13.4 | 13.4  | 14.3  | 17.6 | 19.3 | 21.0 | 21.1 | 19.9 | 18.1 | 16.0 | 15.1 |
| Minimum:                  | 12.7 | 12.2 | 12.4  | 12.9  | 15.6 | 18.2 | 19.9 | 19.5 | 18.3 | 15.7 | 14.3 | 14.0 |
| Maximum:                  | 14.6 | 14.3 | 15.2  | 15.7  | 19.2 | 20.5 | 21.9 | 22.1 | 21.0 | 19.5 | 17.9 | 16.4 |

| 2023 Influent pH |      |      |       |       |      |      |      |      |      |      |      |      |
|------------------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| Day              | Jan  | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
| 1                | 7.24 | 7.61 | 8.15  | 7.63  | 8.11 | 8.29 | 7.38 | 7.62 | 7.90 | 7.54 | 6.85 | 7.31 |
| 2                | 7.63 | 7.67 | 8.07  | 7.61  | 8.04 | 7.95 | 7.54 | 7.44 | 7.67 | 7.54 | 6.58 | 7.19 |
| 3                | 7.59 | 7.81 | 7.98  | 8.17  | 8.13 | 7.49 | 7.78 | 7.86 | 7.46 | 7.80 | 7.38 | 7.42 |
| 4                | 7.81 | 7.39 | 7.85  | 7.49  | 8.10 | 7.74 | 7.65 | 7.78 | 7.60 | 7.65 | 6.85 | 7.47 |
| 5                | 7.70 | 7.28 | 7.72  | 7.63  | 7.90 | 7.59 | 7.43 | 7.89 | 7.80 | 7.68 | 7.84 | 7.49 |
| 6                | 7.73 | 7.72 | 7.80  | 8.08  | 7.66 | 7.65 | 7.44 | 7.43 | 7.82 | 7.75 | 7.55 | 7.22 |
| 7                | 7.57 | 7.79 | 8.00  | 7.82  | 7.57 | 7.92 | 7.58 | 7.48 | 7.83 | 7.88 | 7.96 | 7.84 |
| 8                | 7.59 | 7.80 | 7.30  | 7.70  | 7.95 | 7.68 | 7.61 | 7.84 | 8.08 | 7.34 | 7.38 | 7.54 |
| 9                | 7.60 | 7.82 | 8.06  | 7.48  | 7.74 | 8.02 | 7.78 | 7.84 | 7.78 | 7.79 | 7.69 | 7.76 |
| 10               | 7.74 | 7.83 | 7.66  | 7.69  | 7.63 | 7.63 | 7.49 | 7.77 | 7.64 | 7.60 | 7.28 | 7.67 |
| 11               | 7.71 | 7.71 | 7.78  | 8.06  | 8.07 | 6.61 | 7.50 | 7.91 | 7.47 | 7.60 | 7.44 | 7.62 |
| 12               | 7.79 | 7.58 | 7.50  | 8.06  | 7.55 | 7.58 | 7.85 | 7.79 | 7.59 | 7.70 | 7.49 | 7.67 |
| 13               | 7.54 | 7.77 | 8.15  | 7.84  | 7.56 | 7.68 | 7.65 | 7.56 | 7.90 | 7.81 | 7.72 | 7.95 |
| 14               | 7.55 | 7.88 | 7.70  | 7.72  | 7.60 | 8.08 | 7.24 | 7.69 | 7.02 | 7.84 | 7.60 | 7.48 |
| 15               | 7.58 | 8.09 | 7.74  | 8.01  | 7.87 | 7.08 | 7.80 | 7.77 | 7.64 | 8.11 | 7.72 | 7.51 |
| 16               | 7.73 | 8.08 | 7.90  | 7.72  | 7.74 | 7.28 | 7.69 | 7.74 | 7.41 | 7.61 | 7.71 | 7.78 |
| 17               | 7.74 | 7.91 | 7.95  | 7.63  | 7.86 | 7.65 | 7.88 | 7.59 | 7.59 | 7.85 | 7.61 | 7.38 |
| 18               | 7.46 | 7.14 | 8.13  | 8.02  | 7.56 | 7.64 | 7.91 | 7.91 | 7.52 | 7.71 | 7.36 | 7.50 |
| 19               | 7.84 | 7.61 | 7.48  | 8.00  | 7.57 | 7.36 | 7.80 | 7.51 | 7.79 | 7.57 | 7.77 | 7.52 |
| 20               | 7.36 | 7.76 | 7.76  | 8.00  | 7.85 | 7.52 | 7.92 | 7.41 | 7.20 | 7.60 | 7.74 | 7.55 |
| 21               | 7.76 | 7.81 | 8.06  | 7.75  | 7.49 | 7.53 | 7.72 | 7.92 | 7.20 | 7.19 | 8.25 | 7.40 |
| 22               | 7.86 | 8.17 | 8.16  | 7.80  | 7.41 | 6.63 | 7.90 | 7.59 | 7.89 | 7.72 | 7.55 | 7.62 |
| 23               | 7.67 | 7.65 | 7.73  | 7.66  | 7.91 | 7.13 | 7.90 | 7.63 | 7.46 | 7.51 | 7.95 | 7.69 |
| 24               | 7.98 | 8.08 | 7.63  | 8.14  | 7.83 | 7.77 | 7.59 | 7.62 | 7.66 | 7.57 | 7.85 | 7.74 |
| 25               | 7.74 | 7.97 | 7.79  | 7.96  | 7.93 | 7.31 | 7.77 | 7.37 | 7.77 | 7.66 | 7.78 | 7.80 |
| 26               | 7.88 | 7.57 | 8.03  | 7.99  | 8.12 | 7.70 | 7.61 | 7.57 | 7.66 | 8.16 | 7.97 | 7.99 |
| 27               | 7.85 | 7.55 | 8.06  | 8.02  | 7.65 | 7.61 | 7.38 | 7.40 | 7.55 | 7.83 | 7.62 | 7.57 |
| 28               | 7.87 | 8.02 | 8.03  | 8.16  | 7.29 | 7.86 | 7.58 | 7.64 | 7.59 | 7.62 | 7.65 | 7.65 |
| 29               | 7.34 |      | 7.51  | 8.09  | 7.79 | 7.79 | 7.58 | 7.45 | 7.95 | 7.21 | 7.63 | 7.51 |
| 30               | 7.60 |      | 8.22  | 7.61  | 7.87 | 6.73 | 7.54 | 7.55 | 7.70 | 7.89 | 8.11 | 7.54 |
| 31               | 7.21 |      | 8.09  |       | 8.02 |      | 7.85 | 7.43 |      | 7.96 |      | 7.49 |
| Average:         | 7.65 | 7.75 | 7.87  | 7.85  | 7.79 | 7.55 | 7.67 | 7.65 | 7.64 | 7.69 | 7.60 | 7.58 |
| Minimum:         | 7.21 | 7.14 | 7.30  | 7.48  | 7.29 | 6.61 | 7.24 | 7.37 | 7.02 | 7.19 | 6.58 | 7.19 |
| Maximum:         | 7.98 | 8.17 | 8.22  | 8.17  | 8.13 | 8.29 | 7.92 | 7.92 | 8.08 | 8.16 | 8.25 | 7.99 |

| 2023 Effluent pH |      |      |       |       |      |      |      |      |      |      |      |      |
|------------------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| Day              | Jan  | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
| 1                | 7.21 | 7.33 | 7.39  | 7.34  | 7.31 | 7.31 | 7.32 | 7.28 | 7.32 | 7.33 | 7.14 | 7.24 |
| 2                | 7.09 | 7.14 | 7.39  | 7.26  | 7.29 | 7.21 | 7.24 | 7.31 | 7.24 | 7.28 | 7.19 | 7.23 |
| 3                | 7.06 | 7.27 | 7.46  | 7.36  | 7.27 | 7.20 | 7.22 | 7.29 | 7.15 | 7.31 | 7.11 | 7.09 |
| 4                | 7.06 | 7.28 | 7.32  | 7.26  | 7.33 | 7.25 | 7.24 | 7.39 | 7.31 | 7.25 | 7.19 | 7.17 |
| 5                | 7.10 | 7.20 | 7.23  | NT    | 7.22 | 7.30 | 7.26 | 7.30 | 7.24 | 7.05 | 7.26 | 7.07 |
| 6                | 7.18 | 6.99 | 7.35  | 7.28  | 7.13 | 7.32 | 7.13 | 7.29 | 7.30 | 7.08 | 7.12 | 7.11 |
| 7                | 7.16 | 7.29 | 7.35  | 7.28  | 7.35 | 7.33 | 7.19 | 7.34 | 7.31 | 7.01 | 7.09 | 7.16 |
| 8                | 7.24 | 7.35 | 7.33  | 7.37  | 7.34 | 7.32 | 7.18 | 7.39 | 7.34 | 7.03 | 7.19 | 7.13 |
| 9                | 7.07 | 7.24 | 7.39  | 7.29  | 7.32 | 7.36 | 7.22 | 7.40 | 7.25 | 7.10 | 7.06 | 7.21 |
| 10               | 7.05 | 7.15 | 7.40  | 7.19  | 7.36 | 7.13 | 7.17 | 7.36 | 7.27 | 7.25 | 7.18 | 7.23 |
| 11               | 7.00 | 7.09 | 7.32  | 7.32  | 7.31 | 7.21 | 7.28 | 7.30 | 7.30 | 7.27 | 7.18 | 7.13 |
| 12               | NT   | 7.27 | 7.32  | 7.36  | 7.33 | 7.31 | 7.27 | 7.23 | 7.33 | 7.28 | 7.22 | 7.31 |
| 13               | 7.02 | 7.35 | 7.21  | 7.22  | 7.22 | 7.26 | 7.20 | 7.27 | 7.32 | 7.30 | 7.00 | 7.23 |
| 14               | 6.93 | 7.25 | 7.34  | 7.33  | 7.21 | 7.30 | 7.20 | 7.34 | 7.18 | 7.14 | 7.19 | 7.14 |
| 15               | 7.15 | 7.31 | 7.26  | 7.25  | 7.19 | 7.27 | 7.18 | 7.35 | 7.17 | 7.18 | 7.21 | 7.15 |
| 16               | 7.03 | 7.39 | 7.33  | 7.24  | 7.28 | 7.26 | 7.07 | 7.26 | 7.29 | 7.21 | 7.08 | 7.08 |
| 17               | 7.07 | 7.35 | 7.28  | 7.33  | 7.26 | 7.24 | 7.18 | 7.38 | 7.26 | 7.13 | 7.25 | 7.14 |
| 18               | 7.19 | 7.35 | 7.31  | 7.30  | 7.29 | 7.28 | 7.23 | 7.32 | 7.29 | 7.17 | 7.10 | 7.15 |
| 19               | 7.08 | 7.34 | 7.25  | 7.34  | 7.13 | 7.29 | 7.37 | 7.31 | 7.28 | 7.15 | 7.09 | 7.25 |
| 20               | 7.22 | 7.29 | 7.08  | 7.34  | 7.16 | 7.29 | 7.34 | 7.30 | 7.27 | 7.20 | 7.19 | 7.08 |
| 21               | 7.14 | 7.36 | 7.29  | 7.27  | 7.15 | 7.24 | 7.32 | 7.28 | 7.30 | 7.20 | 7.12 | 7.16 |
| 22               | 7.19 | 7.40 | 7.30  | 7.25  | 7.23 | 7.29 | 7.28 | 7.31 | 7.31 | 7.25 | 7.14 | 7.34 |
| 23               | 7.04 | 7.39 | 7.32  | 7.30  | 7.18 | 7.32 | 7.34 | 7.33 | 7.15 | 7.12 | 7.17 | 7.11 |
| 24               | 6.89 | 7.32 | 7.38  | 7.28  | 7.25 | 7.19 | 7.34 | 7.32 | 7.20 | 7.23 | 7.18 | 7.35 |
| 25               | 6.89 | 7.45 | 7.29  | 7.30  | 7.30 | 7.31 | 7.33 | 7.35 | 7.37 | 7.14 | 7.20 | 7.19 |
| 26               | 7.04 | 7.46 | 7.29  | 7.30  | 7.32 | 7.24 | 7.42 | 7.24 | 7.44 | 6.99 | 7.13 | 7.36 |
| 27               | 7.10 | 7.42 | 7.40  | 7.35  | 7.20 | 7.24 | 7.43 | 7.27 | 7.28 | 7.12 | 7.16 | 7.26 |
| 28               | 7.24 | 7.43 | 7.38  | 7.31  | 7.20 | 7.23 | 7.34 | 7.28 | 7.26 | 7.23 | 7.22 | 7.34 |
| 29               | 7.05 |      | 7.49  | 7.29  | 7.18 | 7.17 | 7.33 | 7.28 | 7.30 | 7.15 | 7.07 | 7.28 |
| 30               | 7.02 |      | 7.38  | 7.29  | 7.07 | 7.21 | 7.25 | 7.33 | 7.32 | 7.14 | 7.14 | 7.30 |
| 31               | 6.99 |      | 7.34  |       | 7.33 |      | 7.29 | 7.32 |      | 7.03 |      | 7.29 |
| Average:         | 7.08 | 7.30 | 7.33  | 7.30  | 7.25 | 7.26 | 7.26 | 7.31 | 7.28 | 7.17 | 7.15 | 7.20 |
| Minimum:         | 6.89 | 6.99 | 7.08  | 7.19  | 7.07 | 7.13 | 7.07 | 7.23 | 7.15 | 6.99 | 7.00 | 7.07 |
| Maximum:         | 7.24 | 7.46 | 7.49  | 7.37  | 7.36 | 7.36 | 7.43 | 7.40 | 7.44 | 7.33 | 7.26 | 7.36 |

## Appendix C – External Laboratory Test Results

| FCPCC INFLUENT          | & EFFLUEN       | NT (ANNUAL) –Sept            | ember 6, 2023 |
|-------------------------|-----------------|------------------------------|---------------|
| Parameter               | Unit            | Influent                     | Effluent      |
| AMMONIA NITROGEN        | mg/L            | 48                           | 42            |
| рН                      | pH Units        | 7.51                         | 7.9           |
| ALKALINITY              | mg/L            | -                            | -             |
| DISSOLVED CHLORIDE      | mg/L            | -                            | -             |
| TOTAL KJELDAHL NITROGEN | mg/L            | -                            | -             |
| TOTAL NITROGEN          | mg/L            | 81.6                         | 45.8          |
| OIL AND GREASE          | mg/L            | 28                           | <1.0          |
| SULPHATE (D)            | mg/L            | -                            | -             |
| SULPHIDE (T)            | mg/L            | 0.17                         | 0.043         |
| CYANIDE (T)             | mg/L            | 0.00173                      | 0.00223       |
| FLUORIDE (D)            | mg/L            | -                            | -             |
| TOTAL PHENOLS           | mg/L            | 0.044                        | <0.0015       |
| TOTAL ORGANIC CARBON    | mg/L            | 130                          | 30            |
| PHOSPHOROUS (T)         | μg/L            | 7.8                          | 4.1           |
|                         |                 | METALS                       |               |
| Parameter               | Unit            | Influent                     | Effluent      |
| ALUMINUM (T)            | μg/L            | 0.775                        | 0.045         |
| ARSENIC (T)             | μg/L            | 2.53                         | 0.74          |
| BARIUM (D)              | μg/L            | 117                          | 91.2          |
| BORON (D)               | μg/L            | 670                          | 650           |
| CADMIUM (D)             | μg/L            | <0.050                       | <0.050        |
| CHROMIUM (T)            | μg/L            | <5.0                         | <5.0          |
| COBALT (D)              | μg/L            | <1.0                         | <1.0          |
| COPPER (D)              | μg/L            | 12.5                         | 10.5          |
| IRON (D)                | μg/L            | 444                          | 254           |
| LEAD (T)                | μg/L            | 4.2                          | <1.0          |
| MANGANESE (D)           | μg/L            | 47.6                         | 79.6          |
| MERCURY (T)             | μg/L            | <0.038                       | <0.038        |
| MOLYBDENUM (T)          | μg/L            | <5.0                         | <5.0          |
| NICKEL (D)              | μg/L            | <5.0                         | <5.0          |
| SELENIUM (T)            | μg/L            | 0.75                         | <0.50         |
| SILVER (T)              | μg/L            | 0.51                         | <0.10         |
| TIN (T)                 | μg/L            | <25                          | <25           |
| ZINC (T)                | μg/L            | 372                          | 29            |
| VOLAT                   | ILE ORGANIC COM | POUNDS, PCBs, and PHTHALATES | 5             |
| Parameter               | Unit            | Influent                     | Effluent      |
| BENZENE                 | μg/L            | <0.40                        | <0.40         |
| CHLOROFORM              | μg/L            | 1.9                          | 1.1           |
| CHLOROMETHANE           | μg/L            | <1.0                         | <1.0          |
| DICHLOROBROMOMETHANE    | μg/L            | <1.0                         | <1.0          |
| DICHLOROMETHANE         | μg/L            | <2.0                         | <2.0          |
| ETHYLBENZENE            | μg/L            | <0.40                        | <0.40         |
| TETRACHLOROETHYLENE     | μg/L            | <0.50                        | <0.50         |
| TOLUENE                 | μg/L            | 6.7                          | <0.40         |
| 1,1,1-TRICHLOROETHANE   | μg/L            | <0.50                        | <0.50         |
| 1,1,2-TRICHLOROETHANE   | μg/L            | <0.50                        | <0.50         |
| TRICHLOROETHYLENE       | μg/L            | <0.50                        | <0.50         |
|                         | μg/L            | <100                         | <2.0          |
| DI-N-BUTYLPHTHALATE     | μg/L            | <100                         | <2.0          |
| NAPHTHALENE             | μg/L            | -                            | -             |
| PCBS                    | μg/L            | <0.050                       | <2.5          |

NT - Not Tested

| FCPCC Biosolids         |              |           |           |         |  |  |  |  |  |
|-------------------------|--------------|-----------|-----------|---------|--|--|--|--|--|
| Parameter               | Unit         | 04-Jan-23 | 18-Jul-23 | Average |  |  |  |  |  |
| TOTAL SOLIDS            | %            | 31.6      | 30.4      | 31.0    |  |  |  |  |  |
| VOLATILE SOLIDS         | %            | 77.7      | 65.9      | 71.8    |  |  |  |  |  |
| MOISTURE                | %            | 68        | 70        | 69      |  |  |  |  |  |
| TOTAL KJELDAHL NITROGEN | % dry<br>wt. | 4.2       | 5.1       | 4.7     |  |  |  |  |  |
| ARSENIC (T)             | µg/g         | 1.89      | 2.60      | 2.25    |  |  |  |  |  |
| CADMIUM (T)             | µg/g         | 1.57      | 2.37      | 1.97    |  |  |  |  |  |
| CHROMIUM (T)            | µg/g         | 19.6      | 35.8      | 27.7    |  |  |  |  |  |
| COBALT (T)              | µg/g         | 1.83      | 2.80      | 2.32    |  |  |  |  |  |
| COPPER (T)              | µg/g         | 523       | 830       | 677     |  |  |  |  |  |
| IRON (T)                | µg/g         | 20,500    | 42,400    | 31,500  |  |  |  |  |  |
| LEAD (T)                | µg/g         | 11.3      | 17.9      | 14.6    |  |  |  |  |  |
| MERCURY (T)             | µg/g         | 0.571     | 1.06      | 0.816   |  |  |  |  |  |
| MOLYBDENUM (T)          | µg/g         | 4.52      | 4.06      | 4.29    |  |  |  |  |  |
| NICKEL (T)              | µg/g         | 9.04      | 12.5      | 10.8    |  |  |  |  |  |
| PHOSPHOROUS (T)         | µg/g         | 13,700    | 25,800    | 19,800  |  |  |  |  |  |
| POTASSIUM (T)           | µg/g         | 742       | 924       | 833     |  |  |  |  |  |
| SELENIUM (T)            | µg/g         | 2.99      | 4.63      | 3.81    |  |  |  |  |  |
| ZINC (T)                | μg/g         | 932       | 1,610     | 1,270   |  |  |  |  |  |

| FCPCC Biosolids |                 |  |  |  |  |  |  |
|-----------------|-----------------|--|--|--|--|--|--|
| Parameter       | Fecal Coliforms |  |  |  |  |  |  |
| Unit            | MPN / g dry     |  |  |  |  |  |  |
| 4-Jan-23        | <20             |  |  |  |  |  |  |
| 7-Feb-23        | <20             |  |  |  |  |  |  |
| 13-Mar-23       | <20             |  |  |  |  |  |  |
| 11-Apr-23       | <20             |  |  |  |  |  |  |
| 15-May-23       | <20             |  |  |  |  |  |  |
| 18-Jul-23       | <20             |  |  |  |  |  |  |
| 8-Aug-23        | <20             |  |  |  |  |  |  |
| 6-Sep-23        | <20             |  |  |  |  |  |  |
| 16-Oct-23       | <20             |  |  |  |  |  |  |
| 4-Dec-23        | <20             |  |  |  |  |  |  |
| Average         | <20             |  |  |  |  |  |  |

 $\underline{\text{Note}}:$  Fecal coliform samples for FCPCC biosolids were taken from the ATAD Out Sample Point

## Appendix D – Odour Reports

### **Odour Concerns**

| Date of<br>Occurrence | Location                             | Incident Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extent of<br>damage (if<br>applicable) | Preventative<br>Measures<br>Identified | Conclusion for this Environmental<br>Incident                                                                                                                                                                                  |
|-----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                      | FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCC - Odour (                          | (x14)                                  |                                                                                                                                                                                                                                |
| 26-Jan-23             | Dickenson<br>Way<br>Parksville<br>BC | called to say that she<br>has noticed odours have been worse<br>the last few days. Odours seem to get<br>worse later in the day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                        | Action taken is adequate and item can be closed.                                                                                                                                                                               |
| 2-May-23              | Mulholland<br>Dr.                    | emailed in the RDN's odour<br>communication form indicating that<br>there has been some bad odours<br>coming from the French Creek<br>treatment plant over the last few days.<br>The weather condition at time of call<br>was sunny, 23c, wind westerly at<br>10km/h. I gave a call and<br>explained to her the work that was<br>happening on site. (WALCO cleaning of<br>ATAD's #3 & 6 and the investigation that<br>was happening into the chemical<br>scrubber). I explained that there had<br>been notices sent out to the neighbors<br>explaining about the extra noise and<br>odours that may be experienced over<br>this week. Thanked me for the<br>phone call and the update. |                                        |                                        | s actions regarding this incident were<br>sufficient, and the reasons associated are<br>clearno further action is required, as the<br>chemical scrubber is being addressed by RDN<br>Engineering, Operations, and Maintenance. |
| 5-Sep-23              | Dalmation<br>Drive                   | Resident called to say that she has<br>noticed that it has been odorous over<br>the past week. The night of September<br>5th was especially bad. The caller also<br>indicated that the emergency number<br>did not send her to the correct<br>department to file a complaint (1-800-<br>862-3429)                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                        | Chief Operator handled the odor concern properly and agreed to follow up with caller.                                                                                                                                          |

| Date of<br>Occurrence | Location           | Incident Description                                                                                                                                                                                                                                                                                                                                                                                      | Extent of<br>damage (if<br>applicable)                                                                            | Preventative<br>Measures<br>Identified                                                                                                                            | Conclusion for this Environmental<br>Incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-Dec-23              | FCPCC              | Complainant opened window at her<br>residence and noticed a strong sewage<br>smell, subsided after about 15 minutes                                                                                                                                                                                                                                                                                       | Septage<br>haulers spilling<br>residual<br>sewage from<br>connection<br>hose after<br>transaction is<br>complete. | Checked all odour<br>control systems were<br>operating properly,<br>chemical scrubber had<br>just had product change<br>done, septage area had<br>been hosed down | Temporary odor issue from septage system<br>when offloading, which can be normal for these<br>septage sites. Appropriate response taken to<br>communicate with caller.                                                                                                                                                                                                                                                                                                                                                                        |
| 7-Aug-23              | Road               | called into the after hours<br>odour complaint line to say that it has<br>been odorous for the last few number<br>of nights and what ever we are doing is<br>not working and that he will start calling<br>in every night now. It is a<br>couple blocks South East of the plant.<br>The last few days have been overcast<br>with not much wind and temperatures<br>hovering close to 20C in the mornings. |                                                                                                                   |                                                                                                                                                                   | The weather has been calm, muggy, warm, and<br>overcast which contributes to odors around our<br>facilities. The chemical scrubber commissioning<br>should help mitigate odors in the area.                                                                                                                                                                                                                                                                                                                                                   |
| 3-Oct-23              | Dalmatian<br>Drive | from Dalmatian Drive<br>called in to say that she is frequently<br>experiencing odours in her<br>neighborhood. The odours seem to be<br>frequently noticeable in the after hours<br>of the treatment plant. The last time<br>she noticed odours was this last Sunday<br>but decided to call in this morning.                                                                                              |                                                                                                                   |                                                                                                                                                                   | In discussion with : The dewatering biofilter<br>has been replaced with an adequate amount of<br>media on it. OPS will continue to monitor it, but<br>they believe that there is enough for now. The<br>new media does have a different odor to it then<br>the other media when it was new. OPs is still<br>working with Arjun to figure out our chemical<br>scrubber. VIU came to site on Friday Sept 29 to<br>do there air monitoring so am looking forward<br>to there report as to what they found on site<br>and in the neighboring area |

| Date of<br>Occurrence | Location                     | Incident Description                                                                                                                                                                                                                                                                                                          | Extent of<br>damage (if<br>applicable) | Preventative<br>Measures<br>Identified                                                                                                                                                              | Conclusion for this Environmental<br>Incident                                                                                                                    |
|-----------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-Dec-23             | Area<br>around<br>FCPCC      | Caller says that she is fed up with the<br>constant bad odours in the area over<br>the past 5 months. She indicates that<br>children on the school buses are closing<br>the windows on the buses and have<br>disgusted faces because of the smell.                                                                            |                                        |                                                                                                                                                                                                     | During the 5 months mentioned, there were<br>projects at FCPCC that could have added to<br>odor. This has now ceased and all operations is<br>normal.            |
| 17-May-23             | Mulholand<br>and Lee<br>Road | called to say that he<br>was walking and noticed a foul smell<br>when at the corner of Mulholand and<br>Lee Road this morning. He said that he<br>attended an open house were he was<br>told to call in anytime he detected foul<br>odours in the area of the plant.                                                          |                                        | It is believed that this<br>odour complaint was<br>due to the fact that<br>MH#1 (Influent manhole<br>/ bypass chamber) was<br>open for the Influent<br>Bypass pumping RFP<br>contractor site visit. | The reasoning behind the odor source is accurate, and as the event is completed the odor no longer exists. No further action is required.                        |
| 5-Sep-23              | Rosemount<br>Close           | called<br>to complain about the odour around the<br>Morningstar golf course south pond. He<br>stated the pond looks black and seems<br>to be going anaerobic. He stated that<br>there was an event like this about 6<br>years ago and that this would not<br>happen if the treatment plant didn't<br>send its effluent there. |                                        |                                                                                                                                                                                                     | MGC pond is not an RDN asset, and any concern<br>from the pond is not the RDN's responsibility.<br>This should not be a Incident but more of a<br>communication. |
| 19-Dec-23             | Rd,<br>Parksville,<br>BC     | Caller noticed a terrible smell when going outside between 14:15 and 14:30                                                                                                                                                                                                                                                    |                                        | Checked plant odour<br>control systems and<br>operations - everything<br>normal. Checked<br>septage delivery slips -<br>nothing showing                                                             | Nothing apparent that would have contributed to any unusual odor.                                                                                                |

| Date of<br>Occurrence | Location                         | Incident Description                                                                                                                                                                                                 | Extent of<br>damage (if<br>applicable) | Preventative<br>Measures<br>Identified                                                                                                                                                                                | Conclusion for this Environmental<br>Incident                                                                                                                                                                                                            |
|-----------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16-Aug-23             | FCPCC                            | Noticed odor around plant gate and<br>want to inform us.                                                                                                                                                             |                                        | Checked all odor control<br>systems are functioning.<br>Nothing abnormal in<br>plant                                                                                                                                  | around 4:15pm on Aug 16/23.<br>new to the area, and noticed an odor when<br>driving by the front FCPCC gate.<br>been told by another resident to call the FCPCC<br>every time she noticed any odor. Temp was 18C,<br>wind NW 13k/h, RH 52%, clear skies. |
| 18-Aug-23             | FCPCC                            | Wanting to let us know of odors at this time.                                                                                                                                                                        |                                        | Checked all odor control<br>systems are functioning.<br>Nothing abnormal in<br>plant                                                                                                                                  | around 11:30am on Aug 18/23.<br>had been told by another resident to call the<br>FCPCC every time she noticed any odor. Temp<br>was 16C, wind NW 24k/h, RH 70%, clear skies.<br>All odor systems were checked and operating as<br>intended.              |
| 5-Oct-23              | Dalmatian<br>Drive<br>Parksville | called in to report that<br>she could detect an odour at her<br>residence that she believes is coming<br>from the Wastewater treatment plant.<br>She said that she will continue to call<br>when she detects odours. |                                        |                                                                                                                                                                                                                       | Note are sufficient for this incident.                                                                                                                                                                                                                   |
| 18-Nov-23             | Dalmation<br>Drive               | Homeowner states that it smells<br>horrible today.                                                                                                                                                                   |                                        | It was found that the<br>new biofilter media for<br>De-watering is not<br>performing very well. It<br>was also found that<br>during an inspection of<br>the plant that more<br>water was needed to the<br>bio-towers. | The reclaimed water lines were looked into, and<br>a contractor worked on the RSW system Dec<br>5/23 which resulted in better RSW flow.                                                                                                                  |

| Parksville & Qualicum Interceptor-Odour (1) |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                        |                                                                                                                                                            |  |  |  |
|---------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Date of<br>Occurrence                       | Location   | Incident Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extent of<br>damage (if<br>applicable) | Preventative<br>Measures<br>Identified | Conclusion for this Environmental<br>Incident                                                                                                              |  |  |  |
| 1-Aug-23                                    | Judges Row | from the city of Qualicum<br>Beach called to say that he had received<br>a call from a lady that had been<br>swimming at the beach along Judges<br>Row in Qualicum last night and believes<br>there is a sewage leak there. He had<br>sent two staff members out to<br>investigate but nothing was found but<br>wanted to ensure the RDN was aware of<br>the concern. and went<br>out to sight and walked the beach area<br>from Judges row to Hall Road Lift<br>station. It was low tide and nothing was<br>found and all lids were well secured and<br>sealed. called the lady that called in<br>the concern. (<br>She was out swimming last night at high<br>tide and at one point said that she<br>noticed a very strong smell of sewage<br>when next to a submerged manhole and<br>then left the area. | Nothing was<br>found.                  |                                        | Investigation and assessment is accurate to<br>indicate this was not from our system, and likely<br>another source (ie. bilge pump, off shore<br>dumping). |  |  |  |

# Appendix E – Environmental Incident Reports

### **Environmental Incidents:**

| Date of<br>Occurrence | Incident<br>Title         | Quantity of<br>Material<br>Spilled | Accident<br>Location        | Incident Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Extent of<br>damage (if<br>applicable) | Preventative<br>Measures<br>Identified | Notes | Conclusion for this<br>Environmental<br>Incident                                                                                                                                              |
|-----------------------|---------------------------|------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCPCC Spill (x1)      |                           |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                        |       |                                                                                                                                                                                               |
| September 20,<br>2023 | Sludge feed<br>line spill | 200 Litres                         | De-<br>Watering<br>Building | Digested sludge feed line to<br>Centrifuge sprung a leak just<br>outside the De-Watering<br>Building just after the<br>Centrifuge had been shut<br>down for the day. Operations<br>were only a few feet away<br>from the pipe when it began to<br>leak. Digested sludge flowed<br>down the driveway and onto<br>the parking lot. Some diluted<br>sludge spilled onto the grass<br>areas next to the parking lot<br>and next to the bridge over<br>Morningstar creek. It is<br>believed that the spill did not<br>enter the creek. Operations<br>exposed the broken pipe and<br>isolated the pumps and valves<br>to this line in preparation of<br>repairing the pipe tomorrow<br>morning. |                                        |                                        |       | The spill has been<br>cleaned up, and the<br>broken pipe repaired<br>and back in service. End<br>of Spill report was<br>completed oct 10/23<br>and is being sent to the<br>Ministry and Feds. |

## Appendix F – Conditional Management Plan 2023 Annual Report

File: 2240-20-CMP



January 4, 2024

Erin Milligan Canadian Shellfish Sanitation Program Coordinator Fisheries and Oceans Canada VIA EMAIL: erin.milligan@dfo-mpo.gc.ca

Dear Erin,

#### Re: 2023 Annual Report French Creek Pollution Control Centre – Conditional Management Plan

The Regional District of Nanaimo (RDN) has a Conditional Management Plan (CMP) for two pump stations associated with the French Creek Pollution Control Centre (FCPCC) near Parksville, BC:

- Hall Road Pump Station, 300 Hall Road
- Bay Avenue Pump Station, 385 Bay Avenue.

The original CMP was established in 2012 and has been renewed several times. The current agreement expires on January 31, 2025.

According to the agreement, the RDN shall report CMP activities annually. This letter summarizes CMP activities from January 1, 2023, to December 31, 2023. It also lists notable upgrades and activities at FCPCC and suggests proposed changes, if any, to future versions of the CMP.

#### **CMP Activities**

There were no trigger events from January 1, 2023, to December 31, 2023.

#### **FCPCC Upgrades and Activities**

The 2023, the work most relevant to the CMP was the Bay Avenue Pump Station Upgrade Project. Once complete (expected in February 2024), this project will increase pumping capacity and meet the current standards for Flood Construction Levels. During the upgrade, the overflow, to which this CMP relates, was removed. It will not be reinstated.

Other upgrades and activities at FCPCC in 2023 include:

- Initiated an Integrated Project Delivery (IPD) method for the FCPCC Expansion and Odour Control Upgrade Project. Completed the Validation stage and started the final Detailed Design.
- Replaced media in the dewatering biofilter.
- Monitored air quality in an ongoing partnership with VIU.
- Cleaned the media in the chemical air scrubber and replaced the chemical with a safer enzyme.

#### Proposed CMP Changes

The RDN recommends removing the Bay Avenue Pump Station from the CMP as the overflow no longer exists at this location.

Recommended changes to the RDN contacts in Appendix D are listed below.

- Contact 1: Ian Lundman, FCPCC Chief Operator Tel: 250-248-5794 ext. 6315 Cell: 250-751-5580 ilundman@rdn.bc.ca
- Contact 2: Rob Skwarczynski, Operations Superintendent Tel: 250-758-1157 Cell: 250-816-2767 <u>Rskwarczynski@rdn.bc.ca</u>
- Contact 3: Belinda Woods, Manager, Wastewater Services Tel: 250-390-6234 Cell: 250-268-9290 bwoods@rdn.bc.ca

If you have any questions regarding this report, please do not hesitate to contact me at 250-390-6575 or snorum@rdn.bc.ca.

Sincerely,

NATI NO

Shelley Norum Wastewater Program Coordinator T: 250-390-6575 | Email: snroum@rdn.bc.ca

## Appendix G – 2023 Management of RDN FCPCC Biosolids (SYLVIS)

ANNUAL SUMMARY

### 2023 Management of Regional District of Nanaimo French Creek Pollution Control Centre Biosolids

| Presented to:      | Shelley Norum, RDN                    |
|--------------------|---------------------------------------|
| Presented by:      | Christian Evans, SYLVIS Environmental |
| Presentation date: | February 7, 2024                      |

#### BACKGROUND

Regional District of Nanaimo (RDN) Class A biosolids from the French Creek Pollution Control Centre (FCPCC) are delivered to the Nanaimo Forest Products Harmac Pacific pulp and paper mill (Harmac) in Nanaimo, BC where they are blended with hog fuel and sand to produce a biosolids growing medium (BGM), a retail-grade product regulated under the BC *Organic Matter Recycling Regulation* (OMRR). BGM is sold to local property developers or used in on-site landfill closure. BGM from FCPCC biosolids has been produced at Harmac since 2020.

SYLVIS Environmental provides qualified professional oversight of the BGM program and certifies annual or semi-annual batches of BGM as per the BGM criteria in the OMRR. To date all batches of BGM produced using FCPCC biosolids at Harmac have met regulatory quality criteria.

| Row # | Material          | Category                            | 2020  | 2021  | 2022  | 2023  |
|-------|-------------------|-------------------------------------|-------|-------|-------|-------|
| 1     |                   | Carry over from previous year       | 0     | 730   | 1,031 | 1,682 |
| 2     | FCPCC             | Tonnage delivered to BGM project    | 1,007 | 1,299 | 1,291 | 1,124 |
| 3     | Biosolids         | Tonnage exported from site          | 277   | 998   | 640   | 605   |
| 4     | (wt)              | Tonnage used in landfill cover      | 0     | 0     | 0     | 648   |
| 5     |                   | Carry over to next year (1+2)-(3+4) | 730   | 1,031 | 1,682 | 1,554 |
| 6     |                   | Carry over from previous year       | 0     | 3,300 | 4,700 | 7,700 |
| 7     | DOM               | Volume mixed                        | 4,700 | 6,000 | 6,000 | 5,200 |
| 8     | (m <sup>3</sup> ) | Volume exported from site           | 1,400 | 4,600 | 3,000 | 2,800 |
| 9     | (111)             | Volume used in landfill cover       | 0     | 0     | 0     | 3,000 |
| 10    |                   | Carry over to next year (6+7)-(8+9) | 3,300 | 4,700 | 7,700 | 7,100 |

#### 2023 MANAGEMENT SUMMARY

Note: Biosolids are mixed at a ratio of 2 biosolids : 4 hog fuel : 5 sand to produce BGM.

#### **BIOSOLIDS QUALITY SUMMARY**

In 2023, three composite samples were collected by SYLVIS and analyzed for physical parameters, nutrients, and trace elements. In 2023 FCPCC biosolids met the OMRR Class A criteria for trace elements concentrations. Eight samples for fecal coliform analysis were collected by SYLVIS in 2023. Six of these samples had fecal coliforms below the Class A criterion of 1,000 MPN/g. Two samples collected late in 2023 exceeded this criterion, but it was determined that they were spurious results, likely related to sample collection or storage issues. Unfortunately



there was insufficient time in 2023 to re-sample following these results. The RDN's FCPCC sampling results were used to confirm that the biosolids continue to meet the OMRR Class A criterion of < 1,000 MPN/g fecal coliforms.

| WWTP                                | FCPCC           | OMRR Class A<br>Biosolids | Unite     |  |
|-------------------------------------|-----------------|---------------------------|-----------|--|
| # of samples                        | 3               | Criteriaª                 |           |  |
| Available Nutrients                 |                 |                           |           |  |
| Ammonia + Ammonium - N (available)  | 2,697           | -                         | µg/g      |  |
| Nitrate - N (available)             | 4               | -                         | µg/g      |  |
| Phosphorus (total)                  | 23,333          | -                         | µg/g      |  |
| Potassium (available)               | 691             | -                         | µg/g      |  |
| Classification                      |                 |                           |           |  |
| Organic Matter                      | 62.7            | -                         | %         |  |
| Total Nitrogen                      | 4.48            | -                         | %         |  |
| C:N Ratio                           | 7.9             | -                         | -         |  |
| OMRR Trace Elements                 |                 |                           |           |  |
| Arsenic                             | 2.2             | 75                        | µg/g      |  |
| Cadmium                             | 1.60            | 20                        | µg/g      |  |
| Chromium                            | 53.3            | 1,060 <sup>b</sup>        | µg/g      |  |
| Cobalt                              | 2.47            | 150                       | µg/g      |  |
| Copper                              | 713             | 2,200 <sup>b</sup>        | µg/g      |  |
| Lead                                | 17.0            | 500                       | µg/g      |  |
| Mercury                             | 0.593           | 5                         | µg/g      |  |
| Molybdenum                          | 3.43            | 20                        | µg/g      |  |
| Nickel                              | 13.3            | 180                       | µg/g      |  |
| Selenium                            | 1.5             | 14                        | µg/g      |  |
| Zinc                                | 1,140           | 1,850                     | µg/g      |  |
| Physical Properties                 |                 |                           |           |  |
| Total Solids                        | 32.1            | -                         | %         |  |
| Electrical Conductivity (Sat Paste) | 7.78            | -                         | dS/m      |  |
| pH (1:2 Soil:Water)                 | 7.2             | -                         | pН        |  |
| Foreign Matter                      | < 0.1           | 1                         | %         |  |
| Foreign Matter (sharps)             | < 0.1           | 0                         | %         |  |
| Microbiology                        |                 |                           |           |  |
| Fecal coliforms                     | 10 <sup>c</sup> | 1,000                     | MPN/g Dry |  |

| Table 1: French | Creek Pollution | <b>Control Centre</b> | biosolids qualit | v summary - 2023. |
|-----------------|-----------------|-----------------------|------------------|-------------------|
|                 |                 | 0011010001100         | bioconac quant   | , cannar, _c_c    |

Note: All analyses based on dry weight.

a Class A trace element criteria specified in Trade Memorandum T-4-93, Standards for Metals in Fertilizers and Supplements as of August 2017, and microbiological criteria specified in Schedule 3 of the BC *Organic Matter Recycling Regulation*.

b For context, OMRR Class B trace element criteria are specified where no Class A criteria exist.

c Value is the maximum of six samples collected by SYLVIS throughout 2023.





250-390-6560 | 250-954-3792 | 1-877-607-4111

rcu@rdn.bc.ca

www.rdn.bc.ca